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Abstract

MeteoSwiss operates a network of panorama cameras positioned along
Switzerland’s main flight paths. This network supports the meteorologist
in creating general aviation forecasts, which are a summary of expected
prevailing visibility and cloud base height along the path. We present
preliminary results for estimating visibility automatically from panorama
camera images. The estimation algorithm is based on Koschmieder’s law,
which relates apparent contrast of an object to its distance from the ob-
server. Local contrast information is computed from image patches using
a standard measure for human contrast perception. The observation dis-
tance is computed from the known camera position and a digital elevation
model. We evaluate the algorithm by comparison to expert judgements
provided by three trained observers, on a data set of diverse weather con-
ditions and topographies. We show that the estimate of the algorithm is
typically in agreement with the expert judgments. We also discuss the
limitations of the algorithm and present cases where the estimation ac-
curacy is unsatisfactory. Finally, we present an automated image quality
control mechanism that can reliably identify some of those cases.

1 Introduction
MeteoSwiss, the Federal Office of Meteorology and Climatology, operates a net-
work of panorama cameras positioned along Switzerland’s main flight paths.
Each camera is mounted on a rotating head and acquires a panoramic sequence
of images once every ten minutes (see Figure 1). One purpose of the camera
network is to support the meteorologist in creating general aviation forecasts
(GAFORs). The GAFOR predicts the relevant weather conditions for visual
flight, and is a summary of expected prevailing visibility and cloud base height
along the path. The current visibility and cloud base height form the basis of
the forecast.
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Figure 1: A panoramic sequence of six images obtained by the camera stationed
at Chateau d’Oex on January 30th 2015 at 8:00 a.m. The local image contrast
falls quickly with increasing distance from the camera.

Visibility is defined as the greatest distance at which a black object of suit-
able dimensions (located on the ground) can be seen and recognized when ob-
served against the horizon sky [1]. The object is no longer visible when enough
airlight is scattered into the path from the object to the observer. Since the
panorama cameras record natural scenes without dedicated black reference ob-
jects, the closely related definition of visual range is more useful for our appli-
cation. Visual range is defined as the distance at which the contrast of a given
object with respect to its background is just equal to the contrast threshold of
an observer [1]. The apparent object contrast falls below the perceptible thresh-
old when light emanating from the object towards the observer is attenuated
sufficiently, compared to the scattered-in airlight.

In the MeteoSwiss network, visibility is currently estimated from visual ob-
servations and measured using transmissometers. The latter are laser-based
measurement systems for the transmittance, based on the attenuation of emit-
ted light due to scattering. The transmissometer provides a local measurement
of the atmosphere at the measurement site.

MeteoSwiss is engaged in an effort to increase the spatial and temporal
availability of the visibility parameter, which necessitates migrating from man-
ual observations to automated measurements. We present preliminary results
for estimating visibility automatically from panorama camera images. The po-
tential benefit is two-fold. First, we re-use the already existing camera network,
instead of operating additional instruments. Second, panorama cameras ob-
serve more of the atmosphere compared to transmissometers, leading to more
representative measurements for weather situations where the atmosphere is
significantly non-homogeneous.

2 Estimation Method
The estimation algorithm is based on Koschmieder’s law, which relates the ap-
parent contrast Cx of an object to its distance x from the observer

Cx = C0e
−σx (1)

C0 is the inherent object contrast and σ is the extinction coefficient that char-
acterises atmospheric absorption and scattering, cf. Equation (9.9) in [1].
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(a) The apparent contrast is computed on
image patches obtained by sliding a window
across the camera image.

(b) The distance is computed from the cor-
responding image patch of the depth map,
where pixel intensities encode the distance
from the camera.

Figure 2: Koschmieder’s law (1) relates apparent contrast of an object to its
distance from the observer.

The local contrast information Cx is computed from camera image patches
(see Figure 2a) using a standard measure for human contrast perception [4].
This measure is based on the root-mean-squared contrast of the luminance of
the patch pixels, center-weighted by a raised cosine window. See Equations
(1)–(3) in [4] for details.

The observation distance x is computed from the known camera position
and the EU-DEM digital elevation model [2]. The free camera parameters of
rotation and field of view are determined once during the algorithm setup phase
with the help of a GUI (see Figure 3). The DEM is then rendered using the
camera parameters to produce a depth map that corresponds to the camera
image (see Figure 2b).

We also investigated using pose estimation [5] to determine all camera pa-
rameters (including position). In this approach, a set of landmarks (such as
a mountain top) with known coordinates are identified in the camera image,
and the camera parameters are then determined automatically by numerical
optimization. However, we found that the interactive matching takes about
the same manual effort and achieves a greater precision, because easily identifi-
able but distant landmarks often led to bad numerical conditioning for the pose
optimization step.

Using a sliding window approach, the local contrast is computed for each
image patch, and the corresponding depth is taken as the median of all depth
values in the patch. Patches that contain the sky or a depth discontinuity
are discarded. As can be seen from Figure 4, the maximum observed contrast
decays exponentially with distance, in accordance with Koschmieder’s law (1).
The rate of decay is estimated by fitting the parametrized curve
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Figure 3: The camera parameters of rotation and field of view are determined by
interactive matching of the rendered topography to a reference camera image.
The GUI provides a side-by-side view of the camera image and the rendered
topography, or an overlay of the rendered horizon onto the camera image (not
shown). The camera parameters are optimized interactively until a sufficient
matching accuracy is achieved.

Figure 4: Distance versus contrast pairs for patches extracted from the image
sequence depicted in Figure 1. The outliers at approx. 6 km are due to objects
in the view of the camera that are not present in the DEM, and thus have an
incorrect distance assigned to the contrast value. Manual correction or masking
of the generated depth map can remove these outliers (not shown).
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(α− β) e−σx + β (2)

into the 90th percentile of the contrast values, where σ is again the extinction
coefficient and β is the contrast value of opaque fog. α is estimated from the
contrast distribution of objects closest to the camera. Fitting the curve to a
high percentile instead of the maximum provides robustness against outliers in
the scatter plot.

Finally, the visibility range P is estimated as

P = − ln ε

σ
(3)

where ε is the minimal contrast threshold that the human eye can detect, cf.
Equation (9.6) in [1]. ε is usually assumed to be in the range of 0.02 to 0.2 [1].

3 Automated Quality Control
For a fully autonomous application of the algorithm, it is necessary to detect
camera images that are unsuitable for visibility estimation. All images therefore
pass through an automated quality control (QC) step, and the visibility is not
estimated for image sequences of insufficient quality. These are images where
the illumination of the scene is insufficient, that are not properly aligned, or
images where the lens is partially or fully occluded.

A misalignment occurs if the camera rotation head becomes blocked, e.g
during a snow storm. The image no longer aligns with the depth map, which
would lead to invalid depth contrast pairs in the visibility estimation step. The
QC corrects small misalignments und detects large ones by means of phase
correlation [3] of the current image to a reference image. The reference is the
same image that has already been used in the depth map alignment step.

Partial or full lens occlusion occurs if water droplets, snow or ice collects on
the lens. Lens occlusions are detected by interest point matching for images in
the panoramic sequence that have no scene overlap. Interest points are detected
using the Good Features to Track algorithm [7] and matched using BRISK
descriptors [6]. Matching interest points with similar pixel coordinates reliably
indicate lens occlusions.

4 Evaluation
We evaluate the algorithm by comparison to judgements provided by three ex-
pert observers, on a data set of diverse weather conditions and topographies.
Using the labeling tool depicted in Figure 5, each expert provided estimates of
the prevailing visibility, the visibility which holds for at least half of the field of
view. The data set contains 130 image sequences from five cameras located in
different topographies (Swiss Plateau, valley and mountain pass), ranging from
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Figure 5: The experts provided estimates of the prevailing visibility with the
help of a labeling tool. Panoramic image sequences were presented in random-
ized order. The expert can read depth values in the image or in the depth map
by using mouse clicks, and enter the prevailing visibility estimate in the text
box. Labels for the whole data set are exported in CSV format.

winter to summer and fog to clear sky. The images were presented in random-
ized order, and five image sequences were presented twice to roughly assess the
labeling consistency of each expert.

Our limited evaluation of intra-expert consistency suggests that all experts
are consistent in their judgments (see Figure 6), but also suggests that there
is a significant inter-expert bias. Figure 7 compares the algorithm estimates
with the expert labels on 26 image sequences from the Chateau d’Oex camera.
Overall there is a good agreement between the algorithm and the experts, but
there are also significant differences. An analysis of the image sequences 11 to
15 reveals a common cause. Since those images were recorded in spring, there
was still snow on the mountain tops, while the valley was already free of snow.
The partial snow cover creates a high local contrast for the distant mountain
tops, which had a marked influence on the algorithm but not the experts.

Table 1 summarizes the overall performance of the algorithm, compared to
the three experts. We used three different error measures in the evaluation.

1. GAFOR state error. The difference in GAFOR states between two
estimates. The error is zero if the estimates are in the same GAFOR
state, and counts the number of states if they are different. E.g. estimates
of Oscar and Mike result in a state error of two.

2. Absolute distance error. The difference in kilometers between esti-
mates.

3. Relative distance error. The difference in kilometers between esti-
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Figure 6: Intra-expert labeling consistency for five images of the data set. Labels
from the same expert are in light – dark blue, light – dark green and orange
– red, respectively. The background colors correspond to the GAFOR classes
Oscar (> 8 km), Delta (> 5 km), Mike (> 2km ) and X-ray (< 2km).

Figure 7: Comparison of the algorithm estimates (red) to the expert labels
(cyan, light and dark green) for 26 images from the Chateau d’Oex camera.
The estimates of the algorithm are typically in agreement with the experts, but
there are significant differences for the image sequences 1 and 11 to 15.
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Algorithm Expert 1 Expert 2 Expert 3

GAFOR state error 0.47 0.60 0.50 0.52

Absolute distance error [km] 3.56 6.35 6.18 9.53

Relative distance error [km] 0.71 0.97 0.92 1.29

Table 1: Overall performance of the algorithm, compared to the three experts.
See the text for a description of the error measures and results.

mates, after a square root transform of each distance. This error measure
accounts for the fact that differences have a bigger impact on low visibili-
ties.

The results for the experts are computed as follows. For each image sequence,
the median estimate of all three experts is calculated. Every expert’s estimate
is then compared to the median, and the errors are averaged over the whole
data set of 130 image sequences. The results for the algorithm are computed
similarly, by comparison to the median estimate of all experts and averaging of
the error over the whole data set. Table 1 shows that the algorithm achieves a
similar overall error compared to the experts. It also shows that expert one and
expert two are more similar to each other than to expert three.

5 Conclusions
The camera based visibility estimation algorithm is currently in the pre-operational
phase. It fulfills our requirement of a small setup effort per camera and doesn’t
need any tuning of its parameters to local conditions. It produces visibility
estimates that are comparable to human observers for a wide range of topogra-
phies and weather conditions. And last but not least, the implementation of the
algorithm is efficient enough to provide estimates for the whole camera network
every ten minutes with modest hardware resources.

But our evaluation has also identified conditions where the estimation error
is large. These are conditions that violate basic assumptions of the underlying
physical model, such as nighttime, significantly non-diffuse illumination or a sys-
tematic bias in the object contrast. The automated quality control is currently
able to identify only a subset of the conditions where estimating the visibility
is not possible.

It also remains to be seen if the camera network is reliable enough for this new
application. Intervention and maintenance procedures are already established
to deal with hardware or software malfunctions in the network.

Our project goals take this uncertainty into account. The algorithm esti-
mates are meant to support the meteorologist in creating GAFORs by provid-
ing dense spatial and temporal visibility information. The estimates therefore
don’t have to satisfy guaranteed error limits before they become useful. The
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preliminary results presented in this report give us confidence that camera based
visibility estimation can generate a substantial new benefit from existing infras-
tructure.
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