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An information-dense yet accessible visualization of past and present weather:

Outdoor Weather Cameras

precipitation

radiation

visibility
snow cover

cloud area fractioncloud type
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Also use photographic images to visualize future weather conditions!

Visualization of Weather Forecasts

Screenshots of the MeteoSwiss smartphone app

observation forecast
observation forecast observation
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Baseline: Analog Retrieval

!𝐼!"#$ Retrieval of best matching individual images from annotated archive

𝐼 !

𝑡 = 0 𝑡 = 1 h 𝑡 = 2 h 𝑡 = 3 h 𝑡 = 4 h 𝑡 = 5 h 𝑡 = 6 h

+ 𝐼 !"
#$

+ 𝐼 !%&
'

!𝐼!
%&' Retrieval of best matching sequence

𝐼! Image sequence taken at Flüela, 10 to 16 UTC on July 2nd, 2020
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I. Images should look real, no obvious artifacts
II. Match future atmospheric, ground and illumination conditions
III. Seamless transition from observation to forecast
IV. Visual continuity between consecutive images 

Proposed Evaluation Criteria
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Evaluation of Analog Retrieval

I. Realism II. Matching 
conditions

III. Seamless 
transition

IV. Visual 
continuity

Analog images 🙂 😐 🙁 🙁

Analog sequence 🙂 🙁 🙁 🙂

High information density of images → retrieving analogs is not feasible 🤔

observations

analog images

analog sequence
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Generate photographic image "𝐼!, given forecast 𝑤! of future weather
conditions

𝐺:𝑤! ↦ "𝐼!

Generator 𝐺(𝑤; 𝜃) is a neural network, 𝜃 trained by minimizing expected loss

argmin" 𝔼#!,%! 𝐿 𝐺(𝑤; 𝜃), 𝐼!

Image Synthesis: A Regression Problem

↦
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Goal: User should not be able to tell whether 𝐼! or !𝐼! is the real image, even 
if they are not identical.

argmin" 𝔼#!,%! 𝐿 𝐺(𝑤!; 𝜃), 𝐼!

Forecast 𝑤! does not determine exact shapes and locations of clouds
→ Pixel-wise loss function is not appropriate, results in uniform sky:

Choice of Loss Function 𝐿

+𝐼! for 𝐿( loss 𝐼!
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Discriminator 𝐷: 𝐼 ↦ [0, 1] mimics user, learns loss function through 
adversarial training

Generator 𝐺: 𝑧 ↦ 𝐼, creates image 𝐼 from random input 𝑧 ~𝒩(0, 1)

min" max& 𝔼% log𝐷(𝐼; 𝜂) + 𝔼' log 1 − 𝐷(𝐺 𝑧; 𝜃 ; 𝜂

Generative Adversarial Networks Goodfellow et al., 2014

authenticate real images 

spot fake images

fool discriminator



13

Generator Architecture

• Conditional Generator Mirza and Osindero, 2014 transforms current image 𝐼!
• Encoder-decoder with skip connections Ronneberger et al., 2015

• Spectral normalization applied to all convolution layers Miyato et al., 2018

ℰ! ℰ! ℰ" 𝒟! ℰ! 𝒟# ℰ# 𝒟$⋯ ⋯

𝑧

𝐼!

𝑤!

𝑤"

'𝐼"
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Discriminator Architecture

• Conditional discriminator 𝐷 𝐼 𝐼!, 𝑤!, 𝑤"
• Two output heads: patch-level 𝐷( and pixel-level 𝐷)* Schonfeld et al., 2020

𝐼!

𝑤!

𝑤"

𝐼" or '𝐼"

𝐷#$

ℰ! ℰ! ℰ" 𝒟! ℰ! 𝒟# ℰ# 𝒟$⋯ ⋯

𝐷)
(0.73, 0.82, ...)
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Descriptor 𝑤: time of day, day of year, 31 COSMO-1 hourly output fields

Training: all pairs (𝐼+, 𝑤+) and (𝐼! , 𝑤!), 𝑡 ∈ [0, 10, 20, … , 360 min] of 2019
Test: Jan to Aug of year 2020 (until decommissioning of COSMO-1 at MCH)

Downscaled to 64 x 128 pixels to speed up training and conserve GPU memory

Evaluation Data

Cevio (elevation 421 m) Etziken (elevation 524 m) Flüela (elevation 2177 m)
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What is your first impression of the image?

I. Realism

generated real generated real
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Results of study with 5 professional users of MCH camera feeds:

User accuracy is not much better than random guessing 🙂

I. Realism

Cevio: 59 % accuracy Etziken: 63 % accuracy Flüela: 55 % accuracy
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Atmosphere: cloud cover, cloud type, visibility
Ground: dry, wet, frost, snow
Illumination: time of day, diffuse or direct

II. Matching Weather Conditions
𝐼 !

+ 𝐼 !

𝑡 = 0 𝑡 = 1 h 𝑡 = 2 h 𝑡 = 3 h 𝑡 = 4 h 𝑡 = 5 h 𝑡 = 6 h
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Example: Mismatch in cloud cover

but forecast 𝑤! predicted 100 % cloud area fraction in medium troposphere!

II. Matching Weather Conditions

(𝐼! 𝐼!
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Visualization failure: forecast 𝑤! is accurate, but generated image "𝐼! is 
inconsistent with it

II. Matching Weather Conditions

🙂
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Possible because 𝐺 is conditioned on 𝐼+, compare to analog retrieval:

III. Seamless Transition  – IV. Visual Continuity
+ 𝐼 !"
#$

+ 𝐼 !%&
'

𝐼 !

𝑡 = 0 𝑡 = 1 h 𝑡 = 2 h 𝑡 = 3 h 𝑡 = 4 h 𝑡 = 5 h 𝑡 = 6 h

+ 𝐼 ! 🙂
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• Photographic images can also visualize future 
weather conditions

• Look realistic, match predicted weather 
conditions, attain seamless transition from 
observation to forecast and visual continuity

Applications:
• Communicate localized forecasts in webcam 

feeds, smartphone app
• Provide similar service to communities and 

tourism organizations

Conclusions

observation forecast
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• Use more accurate and descriptive weather descriptors, to improve 
matching the forecast and the conditions visible in the future

• Scale image size beyond 64 x 128 pixels e.g. using Karras et al., 2018

• Improve transformations involving translations of isolated clouds:

(Including self-attention layers Zhang et al., 2019 did not help)
• Synthesize whole sequences to improve temporal evolution Wu et al., 2020

Future Work
𝐼 !

+ 𝐼 !

𝑡 = 0 𝑡 = 1 h 𝑡 = 2 h 𝑡 = 3 h 𝑡 = 4 h 𝑡 = 5 h 𝑡 = 6 h
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The pre-print of our paper is available at

https://arxiv.org/abs/2203.15601

Tensorflow code, trained models and results are available at

https://github.com/meteoswiss/photocast

Resources

https://arxiv.org/abs/2203.15601
https://github.com/meteoswiss/photocast
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How much 𝐺 𝐼*, 𝑧 𝑤*, 𝑤! struggles to fool the discriminator on the patch level

𝔼+",-",-#𝔼. +
/

log 𝐷/ 𝐺 𝐼*, 𝑧 𝑤*, 𝑤! 𝐼*, 𝑤*, 𝑤!

and on the pixel level

𝔼+",-",-#𝔼. +
"0

log 𝐷"0 𝐺 𝐼*, 𝑧 𝑤*, 𝑤! 𝐼*, 𝑤*, 𝑤!

How similar two generated images look at the pixel level, given different 
random inputs 𝑧1, 𝑧2 ~𝒩(0, 1)

−𝔼+",-",-#𝔼.$,.% +
"03

𝐺"03 𝐼*, 𝑧1 𝑤*, 𝑤! − 𝐺"03 𝐼*, 𝑧2 𝑤*, 𝑤!

Generator Objectives to be Minimized
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How well the patch head 𝐷/ authenticates real images

𝔼+",-",+#-# +
/

log𝐷/ 𝐼! 𝐼*, 𝑤*, 𝑤!

and spots generated images

𝔼+",-",-#𝔼. +
/

log 1 − 𝐷/ 𝐺 𝐼*, 𝑧 𝑤*, 𝑤! 𝐼*, 𝑤*, 𝑤!

How well the pixel head 𝐷"0 can distinguish pixels of a cut-mix Yun et al., 2019 

composite 𝐶

𝔼4 +
"0

𝑀"0𝐷"0 𝐶 + 1 −𝑀"0 log(1 − 𝐷"0 𝐶 )

Discriminator Objectives to be Maximized
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Clouds in 𝐼* are still partially visible in the clear sky regions of !𝐼!
→ Residual transformation learned by the generator does not fully cancel their 
appearance

Artifacts Induced by Residual Learning He et al., 2015

Present image 𝐼) Forecast visualization +𝐼!
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Subset of COSMO-1 Output Fields Schättler et al., 2021


