

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Photographic Visualization of Weather Forecasts

Colloquium in Climatology, Climate Impact and Remote Sensing September 28th, 2022 – Universität Bern

Christian Sigg (MeteoSwiss), Flavia Cavallaro (Comerge), Tobias Günther (FAU) and Martin R. Oswald (ETH Zürich and UvA)

Contact: christian.sigg@meteoswiss.ch

Outline

Motivation: Why Photographic Images?

Baseline and Evaluation Criteria

Method: Conditional GANs

Results

Conclusions and Future Work

 +
 *
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +

Outdoor Weather Cameras

An information-dense yet accessible visualization of the past and present weather:

Visualization of Weather Forecasts

Use multiple visualizations, each focusing on different aspects:

Screenshots of the MeteoSwiss smartphone app

Visualization of Weather Forecasts

Seamless transition from observation to forecast:

 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +</t

Visualization of Weather Forecasts

Also use photographic images to visualize future weather conditions!

Outline

Motivation: Why Photographic Images?

Baseline and Evaluation Criteria

Method: Conditional GANs

Results

Conclusions and Future Work

 +
 *
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +

Baseline: Analog Retrieval

t = 0 t = 1 h t = 2 h t = 3 h t = 4 h t = 5 h t = 6 h

 I_t Image sequence taken at Flüela, 10 to 16 UTC on July 2nd, 2020 \hat{I}_t^{ind} Retrieval of best matching individual images from annotated archive \hat{I}_t^{seq} Retrieval of best matching sequence

Proposed Evaluation Criteria

- I. Images should look real, no obvious artifacts
- II. Match future atmospheric, ground and illumination conditions
- III. Seamless transition from observation to forecast
- IV. Visual continuity between consecutive images

Evaluation of Analog Retrieval

analog images

analog sequence

High information density of images \rightarrow retrieving analogs is not feasible

Outline

Motivation: Why Photographic Images?

Baseline and Evaluation Criteria

Method: Conditional GANs

Results

Conclusions and Future Work

 4
 8
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6</t

Image Synthesis: A Regression Problem

Generate photographic image \hat{I}_t , given forecast w_t of future weather conditions

$$G: w_t \mapsto \hat{I}_t$$

Generator $G(w; \theta)$ is a neural network, θ trained by minimizing expected loss

Difficulty of Choosing Loss Function *L*

 $\operatorname{argmin}_{\theta} \mathbb{E}_{w_t, I_t}[L(G(w_t; \theta), I_t)]$

Forecast w_t does not determine exact shapes and locations of clouds \rightarrow pixel-wise loss function is not appropriate, results in uniform sky:

Goal: User should not be able to tell whether \hat{I}_t or I_t is the real image, even if they are not identical.

Generative Adversarial Networks Goodfellow et al., 2014

Generator $G: z \mapsto \hat{I}$, creates image \hat{I} from random input z

Discriminator $D: I \mapsto [0, 1]$ tries to discriminate between real and generated images

Adversarial Training of G and D

Generator $G: z \mapsto \hat{I}$, creates image *I* from random input *z*

Discriminator $D: I \mapsto [0, 1]$, learns L implicitly through adversarial training

Joint training objective for $G(z; \theta)$ and $D(I; \eta)$:

 $\min_{\theta} \max_{\eta} \mathbb{E}_{I}[\log D(I;\eta)] + \mathbb{E}_{z}[\log\{1 - D(G(z;\theta);\eta\}]$

authenticate real images

fool discriminator

spot fake images

The training is completed successfully if *G* creates realistic images and the accuracy of *D* is not better than random guessing.

Our Generator Architecture

- Conditional Generator Mirza and Osindero, 2014 transforms current image I_0
- Encoder-decoder with skip connections Ronneberger et al., 2015
- Spectral normalization applied to all convolution layers Miyato et al., 2018

Our Discriminator Architecture

Conditional discriminator $D(I|I_0, w_0, w_t)$ Two output heads: patch-level D_p and pixel-level D_{ij} Schonfeld et al., 2020

Training Progress

One video frame per 1000 mini-batch updates of trainiable weights:

Outline

Motivation: Why Photographic Images? Baseline and Evaluation Criteria Method: Conditional GANs

Results

Conclusions and Future Work

 +
 *
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +</t

Evaluation Data

Cevio (elevation 421 m)

Etziken (elevation 524 m) Flüela (elevation 2177 m)

Descriptor *w*: time of day, day of year, 31 COSMO-1 hourly output fields

Training: all pairs (I_0, w_0) and (I_t, w_t) , $t \in [0, 10, 20, ..., 360 \text{ min}]$ of 2019 **Test**: Jan to Aug of year 2020 (until decommissioning of COSMO-1 at MCH) Downscaled to 64 x 128 pixels to speed up training and conserve GPU memory

What is your first impression of the image?

"Looks realistic" vs. "Looks artificially generated"

21

Results of perceptual evaluation

Perceptual evaluation of generative models is the gold standard $Z_{hou et al., 2019}$ \rightarrow Conducted a user study with 5 MeteoSwiss experts on 450 images:

	Judgment			Judgment				Judgment		
Actual	Real	Generated	Actual	Real	Generated	Actu	al I	Real	Generated	
Real	57	18	Real	52	23	Rea	al	57	18	
Generated	43	32	Generated	32	43	Generate	d	49	26	
Cevio.	: 59 % a	accuracy	Etziken	Etziken: 63 % accuracy			üela:	: 55 %	á accuracy	

Overall examiner's accuracy of 59 % (55 to 64 % bootstrap CI) is not much better than random guessing.

II. Matching Weather Conditions

t = 0 t = 1 h t = 2 h t = 3 h t = 4 h t = 5 h t = 6 h

A pixel-wise comparison of forecast visualization \hat{I}_t and true future image I_t is not appropriate \rightarrow use overall descriptive criteria to evaluate accuracy:

- Atmosphere: cloud cover, cloud type, visibility
- Ground: dry, wet, frost, snow
- Illumination: time of day, diffuse or direct

Two possible causes for mismatches

Example: mismatch in observed cloud cover

Inaccurate forecast. w_t does not accurately describe visible conditions

- Evaluating COSMO-1 output fields at camera site can be insufficient
- Spatial or temporal resolution of output fields can be too coarse

Inconsistent visualization. *G* fails to properly account for the changes from w_0 to w_t in the transformation of I_0 to \hat{I}_t .

Matching evaluation results

Evaluation by three experts on 450 image pairs:

	Atmosphere				Illumination			
Camera	C. cover	C. type	Visibility	Ground	Time of day	Sunlight	w_t accurate	\hat{I}_t consistent
Cevio	71 (63, 77)	79 (71, 84)	97 (91, 99)	99 (95, 100)	100	94 (89, 97)	61 (53, 68)	70 (62, 76)
Etziken	69 (61, 75)	82 (75, 87)	90 (83, 93)	99 (95, 100)	99 (93, 99)	90 (83, 93)	60 (51, 67)	73 (65, 79)
Flüela	61 (52, 68)	80 (72, 85)	73 (65, 79)	100	97 (93, 99)	89 (83, 93)	51 (42, 58)	57 (49, 65)
All	67 (62, 71)	80 (76, 84)	86 (83, 89)	99 (98, 100)	98 (96, 99)	91 (88, 93)	57 (52, 62)	67 (62, 71)

- Values are percentages of the possible maximum 150 matches
- Values in parentheses are 95 % bootstrap CIs
- Bold values: CIs do not overlap with corresponding sequence analog CIs

 \hat{I}_t

Analysis of cloud cover mismatches

At Cevio, 44 out 150 cases (29 %) had a mismatch in cloud cover:

	_							
		Atmospher	e		Illumina	ation		
Camera	C. cover	C. type	Visibility	Ground	Time of day	Sunlight	w_t accurate	\hat{I}_t consistent
Cevio	71 (63, 77)	79 (71, 84)	97 (91, 99)	99 (95, 100)	100	94 (89, 97)	61 (53, 68)	70 (62, 76)
Etziken	69 (61, 75)	82 (75. 87)	90 (83. 93)	99 (95, 100)	99 (93, 99)	90 (83. 93)	60 (51, 67)	73 (65.79)

Example: But *w_t* predicted 100 % cloud area fraction in medium troposphere!

Overall: only in 9 of those 44 cases was the mismatch due to the visualization 🐸

III. Seamless Transition

Reproduce current image, $I_0 = \hat{I}_0$:

t = 0 t = 1 h t = 2 h t = 3 h t = 4 h t = 5 h t = 6 h

Pixel-wise RMSE(I_0 , \hat{I}_0) = 1.11×10⁻², compared to 4.64×10⁻² for sequence

III. Seamless Transition

Retain present weather conditions as long as they persist into the future:

Only possible because $G(I_0, z | w_0, w_t)$ transforms I_0 into \hat{I}_t

 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *</t

IV. Visual Continuity

Natural looking cloud development and movement of shadows:

t=0 t=1 h t=2 h t=3 h t=4 h t=5 h t=6 h

 +
 &
 *
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +

IV. Visual Continuity

Change of daylight conditions, including the appearance of artifical lights:

t = 0 t = 1 h t = 2 h t = 3 h t = 4 h t = 5 h t = 6 h

IV. Visual Continuity

Generate the correct newly visible scenery:

t = 0 t = 1 h t = 2 h t = 3 h t = 4 h t = 5 h t = 6 h

 +
 *
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +

Visual Continuity vs. Image Diversity

Increasing σ when sampling $z_i \sim \mathcal{N}(0, \sigma^2)$ leads to a greater image diversity that is deemed consistent with w_t :

32

Outline

Motivation: Why Photographic Images?

Baseline and Evaluation Criteria

Method: Conditional GANs

Results

Conclusions and Future Work

 +
 %
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +

Conclusions

- Photographic images can also visualize future weather conditions
- Look realistic, match predicted weather conditions, attain seamless transition from observation to forecast and visual continuity

Applications:

- Communicate localized forecasts in webcam feeds, smartphone app
- Provide similar service to communities and tourism organizations

Future Work

- Use more accurate and descriptive weather descriptors, to improve matching the forecast *and* the conditions visible in the future
- Scale image size beyond 64 x 128 pixels e.g. using Karras et al., 2018
- Improve transformations involving translations of isolated clouds:

t = 0 t = 1 h t = 2 h t = 3 h t = 4 h t = 5 h t = 6 h (Including self-attention layers Zhang et al., 2019 did not help) Synthesize whole sequences to improve temporal evolution Wu et al., 2020

Our paper is currently under review, the pre-print is available at

https://arxiv.org/abs/2203.15601

Tensorflow code, trained models and results are available at

https://github.com/meteoswiss/photocast

We thank Rega for giving us the permission to use images from the Cevio camera in this study.

We thank Tanja Weusthoff for the preparation of the COSMO-1 forecast data.

We thank Christian Allemann, Yannick Bernard, Thérèse Obrist, Eliane Thürig, Deborah van Geijtenbeek and Abbès Zerdouk for taking part in the perceptual evaluations.

We thank Daniele Nerini for providing his expertise on nowcasting and postprocessing of forecasts.

 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w
 w

Bibliography

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.

Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957.

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). U. Schättler, G. Doms, and C. Schraff. (2021). COSMO- Model Version 6.00: A Description of the Non- hydrostatic Regional COSMO-Model - Part VI: Model Output and Data Formats for I/O.

Schonfeld, E., Schiele, B., & Khoreva, A. (2020). A u-net based discriminator for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8207-8216).

Wu, S., Xiao, X., Ding, Q., Zhao, P., Wei, Y., & Huang, J. (2020).Adversarial sparse transformer for time series forecasting.Advances in Neural Information Processing Systems, 33, 17105-17115.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 6023-6032).

Zhang, H., Goodfellow, I., Metaxas, D., & Odena, A. (2019, May). Self-attention generative adversarial networks. In International conference on machine learning (pp. 7354-7363). PMLR.

Zhou, S., M. Gordon, R. Krishna, A. Narcomey, L. F. Fei-Fei, and M. Bernstein, 2019: HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models. *Advances in Neural Information Processing Systems*, Curran Associates, Inc., Vol. 32.

Generator Objectives to be Minimized

How much $G(I_0, z | w_0, w_t)$ struggles to fool the discriminator on the patch level

$$\mathbb{E}_{I_0, w_0, w_t} \mathbb{E}_{z} \left[\sum_{p} \log \left[D_p(G(I_0, z | w_0, w_t) | I_0, w_0, w_t) \right] \right]$$

and on the pixel level

$$\mathbb{E}_{I_0,w_0,w_t}\mathbb{E}_{Z}\left[\sum_{ij}\log\left[D_{ij}(G(I_0,z|w_0,w_t)|I_0,w_0,w_t)\right]\right]$$

How similar two generated images look at the pixel level, given different random inputs $z_1, z_2 \sim \mathcal{N}(0, 1)$

$$-\mathbb{E}_{I_0,w_0,w_t}\mathbb{E}_{Z_1,Z_2}\left[\sum_{ijc} \left|G_{ijc}(I_0, Z_1|w_0, w_t) - G_{ijc}(I_0, Z_2|w_0, w_t)\right|\right]$$

Discriminator Objectives to be Maximized

How well the patch head D_p authenticates real images

$$\mathbb{E}_{I_0,w_0,I_tw_t}\left[\sum_p \log D_p(I_t|I_0,w_0,w_t)\right]$$

and spots generated images

$$\mathbb{E}_{I_0, w_0, w_t} \mathbb{E}_{z} \left[\sum_{p} \log \left[1 - D_p(G(I_0, z | w_0, w_t) | I_0, w_0, w_t) \right] \right]$$

How well the pixel head D_{ij} can distinguish pixels of a cut-mix Yun et al., 2019 composite C

$$\mathbb{E}_{C}\left[\sum_{ij}M_{ij}D_{ij}(C) + (1-M_{ij})\log(1-D_{ij}(C))\right]$$
⁴⁰

Artifacts Induced by Residual Learning He et al., 2015

Present image I_0

Forecast visualization \hat{I}_t

Clouds in I_0 are still partially visible in the clear sky regions of \hat{I}_t

→ Residual transformation learned by the generator does not fully cancel their appearance

Subset of COSMO-1 Output Fields Schättler et al., 2021

Abbreviation	Unit	Name	-		
ALB_RAD	%	Surface albedo for visible range, diffuse	-		
ASOB_S	W/m^2	Net short-wave radiation flux at surface			
ASWDIFD_S	$\dot{W/m^2}$	Diffuse downward short-wave radiation at the surface			
ASWDIFU_S	W/m^2	Diffuse upward short-wave radiation at the surface			
ASWDIR_S	W/m^2	Direct downward short-wave radiation at the surface			
ATHB_S	W/m^2	Net long-wave radiation flux at surface			
CLCH	%	Cloud area fraction in high troposphere (pressure below ca. 400 hPa)			
CLCM	%	Cloud area fraction in medium troposphere (between ca. 400 and 800 hPa)			
CLCL	%	Cloud area fraction in low troposphere (pressure above ca. 800 hPa)			
CLCT	%	Total cloud area fraction			
D_TD_2M	Κ	$2\mathrm{m}$ dew point depression			
DD_10M	0	$10\mathrm{m}$ wind direction			
DURSUN	\mathbf{S}	Duration of sunshine			
$FF_{-}10M$	m/s	$10\mathrm{m}$ wind speed			
GLOB	W/m^2	Downward shortwave radiation flux at surface			
H_SNOW	m	Snow depth			
HPBL	m	Height of the planetary boundary layer			
PS	\mathbf{Pa}	Surface pressure (not reduced)			
RELHUM_2M	%	$2\mathrm{m}$ relative humidity (with respect to water)			
T_2M	Κ	$2\mathrm{m}$ air temperature			
TD_2M	Κ	$2\mathrm{m}$ dew point temperature			
TOT_PREC	$ m kg/m^2$	Total precipitation			
TOT_RAIN	$ m kg/m^2$	Total precipitation in rain			
TOT_SNOW	$ m kg/m^2$	Total precipitation in snow			
U_{-10M}	m/s	$10\mathrm{m}$ grid eastward wind			
V_10M	m/s	$10 \mathrm{m}$ grid northward wind			
VMAX_10M	m/s	Maximum 10 m wind speed	· +		

42