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The growing volume of surface data is 
both a challenge and an opportunity

In a nutshell
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The growing volume of surface data is 
both a challenge and an opportunity:
• Only a tiny fraction can be inspected 

manually → automated QC must act as
a powerful filter

In a nutshell
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daily manual inspection 

(0.006 % of all surface records)



4

The growing volume of surface data is 
both a challenge and an opportunity:
• Only a tiny fraction can be inspected 

manually → automated QC must act as
a powerful filter

• Data-driven quality control works better
if more data is available

In a nutshell

510 sites measuring daily precipitation
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We use AI techniques:
• To develop domain specific QC tests 

with an optimized cost-benefit ratio

In a nutshell

ROC for detecting spurious precipitation 
measurements in a weighing rain gauge
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We use AI techniques:
• To develop domain specific QC tests 

with an optimized cost-benefit ratio
• To provide a summary of all available 

quality information (QI) that is simple, 
well-defined and relevant to the user

In a nutshell
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From rule design to data-driven models
Examples
Probabilistic plausibility
Running data-driven models in production
Other AI activities in our group

Outline
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We employ a rule-based expert system of currently 943 different 
tests, following WMO guidelines:  WMO (2012)

Rule Design for Automated QC

Hard and soft limits Variability limits
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Evaluation of our rule-set:
• “Simple” rules achieve a good TP to FP ratio, but 

miss many implausible values
• Consistency rules generate an inacceptable number 

of FPs, even though they look sensible on paper
• Aggregate complexity: rule-set specification spans 

> 60,000 table rows
• Redundancy: only 35 % of rules generated test 

failures in 2019

Strengths and Weaknesses

→ Combine simple rules with complex but data-driven models
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3 Information Sources for Data-Driven QC

1. Relative frequency of occurrence
Principle: “Rough errors are rare”
Model: Outlier detection

2. Relationships to other measurements
Principle: “Implausible values are inconsistent”
Model: Continuous regression

3. Expert feedback
Principle: “Model imitates expert”
Model: Discrete classification

Schölkopf et al. (2001)
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From rule design to data-driven models
Examples
Probabilistic plausibility
Running data-driven models in production
Other AI activities in our group

Outline
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Automated precipitation network:
• 100 Lambrecht 15188/1518H3 tipping bucket
• 131 OTT Pluvio2 weighing gauges

Spurious precipitation at weighing gauges:
• Isolated measurements of 0.1 to 0.5 mm / 10 min
• Have negative impact on climatological indices, 

gridded products and NWP verification

We established a QC regime to manually correct 
offending measurements to zero and performed a 
systematic review of all events in 2015.

Detecting Spurious Precipitation

Spurious precipitation events 
on February 11, 2015
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Hypothesis: Spurious precipitation is induced by 
rapid temperature changes of the load cell

Analysis: Training of SVM classifier on primary and 
auxiliary measurements and expert corrections
Classifier achieves high specificity and sensitivity

Use for Quality Control:
• Classifier is readily deployed as an AQC test
• Site-independent, near real-time
• Classifier relies only on instrument data 

→ on-going collaboration with manufacturer

From Analysis to Quality Control Knechtl et al. (2019)
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MCH and SLF together operate 372 manual snow 
measurement sites:
• For avalanche warnings, climatology and hydrology
• Daily measurements of total and new snow depth
• Reported per SMS text

Challenges for QC:
• Drifting snow
• Typos during manual entry
• Observers not following protocol
• Spatial correlation between sites can be low

QC of Manual Snow Measurements
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XGBoost classification and regression models for:
• Presence / absence of new snow and snow cover
• Depth of total and new snow

Features used for prediction:
• Past and future snow measurements
• Temperature, precipitation, global radiation
• Substitution of missing values with grid product 

estimates

QC pass / fail decision based on ROC curves and 
quantile regression

Predicting Presence and Magnitude
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From rule design to data-driven models
Examples
Probabilistic plausibility
Running data-driven models in production
Other AI activities in our group

Outline
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Probabilistic plausibility addresses two 
challenges:

1. How to combine QI generated by 
multiple independent QC systems 
along the data processing chain

2. How to provide a summary of the 
QI that is simple, well-defined and 
relevant to the user

Probabilistic Plausibility
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1. Store test outcomes and expert inspections (both “failed” and “passed”)
2. Compute probabilistic plausibility: chance that measurement would 

pass expert inspection, given all test outcomes

Probabilistic plausibility

Test outcome:
passed / failed

Expert inspection:
passed / failed

Probabilistic
plausibility

Measurement
Observation

partial
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Sequential Naive Bayes updates of the plausibility:  e.g. Bishop (2006), Sec. 8.2

1. Prior plausibility 𝑝𝑝(𝑞𝑞) before QC
2. Posterior plausibility 𝑝𝑝(𝑞𝑞|𝑡𝑡1) after test result 𝑡𝑡1 becomes available
3. Updated posterior 𝑝𝑝(𝑞𝑞|𝑡𝑡1, 𝑡𝑡2) after second test result 𝑡𝑡2

• Method scales to size of our surface DB (currently 22.8 billion records)
• New tests and QC systems can be introduced without recomputation

Computation

Likelihood
𝑝𝑝(𝑡𝑡1|𝑞𝑞)

𝑝𝑝(𝑞𝑞) 𝑝𝑝(𝑞𝑞|𝑡𝑡1) Likelihood
𝑝𝑝(𝑡𝑡2|𝑞𝑞)

𝑝𝑝(𝑞𝑞|𝑡𝑡1, 𝑡𝑡2) …
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From rule design to data-driven models
Examples
Probabilistic plausibility
Running data-driven models in production
Other AI activities in our group

Outline
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Risk of technical debt:  Sculley et al. (2014)

• Feeding models with more data typically increases their 
performance during training

• But creates dependencies on additional data sources in production

Missing data: naive data imputation can degrade performance in 
unexpected ways → train cascade of models with fewer features
Erroneous data: induce false positives / negatives → outlier
classification of inputs, aggregating over models with split input
Changing data: e.g. instrument replacement, product version 
upgrade, new site → simple models reduce re-training need

Lessons Learned
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From rule design to data-driven models
Examples
Probabilistic plausibility
Running data-driven models in production
Other AI activities in our group

Outline
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Use CNN classifier to estimate meteorological visibility:

1. Classify image patches as before or beyond the visibility limit
2. Combine with depthmap to estimate prevailing visibility

Camera-Based Visibility Estimation



26

CNN for Automated Pollen Classification

Air inlet

Particle 
concentrator

Holography

Polarization 
measurement

Fluorescence 
measurement

Sample collector

Hologram of oak pollen

Sauvageat et al. (2019)
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Use conditional Generative Adversarial Networks Isola et al. (2017)
to visualize a weather forecast:
• Generator transforms input image to match future weather conditions
• Discriminator tries to distinguish between real and generated images

cGAN for Photo-Realistic Forecast Visualization

Current weather Forecast visualization Ground truth

G
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AI models make use of the rapidly growing data volume:
1. Model-based testing for AQC
2. Combining and summarizing QI for the user
3. Analysis and transformation of high-dimensional data domains

Operational use of AI models poses new challenges:
• Minimizing technical debt during training
• Keeping model decisions interpretable

AI models clearly realize their potential for the QC of surface data.

Summary
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