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Abstract

We study the problem of finding the dom-
inant eigenvector of the sample covariance
matrix, under additional constraints on the
vector: a cardinality constraint limits the
number of non-zero elements, and non-
negativity forces the elements to have equal
sign. This problem is known as sparse and
non-negative principal component analysis
(PCA), and has many applications includ-
ing dimensionality reduction and feature se-
lection. Based on expectation-maximization
for probabilistic PCA, we present an al-
gorithm for any combination of these con-
straints. Its complexity is at most quadratic
in the number of dimensions of the data. We
demonstrate significant improvements in per-
formance and computational efficiency com-
pared to other constrained PCA algorithms,
on large data sets from biology and com-
puter vision. Finally, we show the usefulness
of non-negative sparse PCA for unsupervised
feature selection in a gene clustering task.

1. Introduction

Principal component analysis (PCA) provides a lower
dimensional approximation of high dimensional data,
where the reconstruction error (measured by Eu-
clidean distance) is minimal. The first principal com-
ponent (PC) is the solution to

arg max
w

w>Cw, subject to ‖w‖2 = 1, (1)

where C ∈ RD×D is the positive semi-definite covari-
ance matrix of the data. It is straightforward to show
that the first PC is the dominant eigenvector of C,
i.e. the eigenvector corresponding to the largest eigen-
value. The first PC maximizes the variance of the
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projected data, while the second PC again maximizes
the variance, under the constraint that it is orthogonal
to the first, and so on.

Constrained PCA and its Applications. We con-
sider problem (1) under two additional constraints on
w: Sparsity ‖w‖0 ≤ K1 and non-negativity w � 0.
Constraining PCA permits a trade-off between maxi-
mizing statistical fidelity on the one hand, and facil-
itating interpretability and applicability on the other
(d’Aspremont et al., 2007). Although it is often the
case that PCA provides a good approximation with
few PCs, each component is usually a linear com-
bination of all original features. Enforcing sparsity
facilitates identification of the relevant influence fac-
tors and is therefore an unsupervised feature selec-
tion method. In applications where a fixed penalty
is associated with each included dimension (e.g. trans-
action costs in finance), a small loss in variance for
a large reduction in cardinality can lead to an over-
all better solution. Enforcing non-negativity renders
PCA applicable to domains where only positive in-
fluence of features is deemed appropriate (e.g. due to
the underlying physical process). Moreover, the to-
tal variance is explained additively by each compo-
nent, instead of the mixed sign structure of uncon-
strained PCA. Often non-negative solutions already
show some degree of sparsity, but a combination of
both constraints enables precise control of the car-
dinality. Sparse PCA has been successfully applied
to gene ranking (d’Aspremont et al., 2007), and non-
negative sparse PCA has been compared favorably to
non-negative matrix factorization for image parts ex-
traction (Zass & Shashua, 2006).

Related Work. Problem (1) is a concave program-
ming problem, and is NP-hard if either sparsity or non-
negativity is enforced (Horst et al., 2000). Although
an efficient global optimizer is therefore unlikely, lo-
cal optimizers often find good or even optimal solu-
tions in practice, and global optimality can be tested

1See final paragraph of this section for a definition of
our notation.
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in O(D3) (d’Aspremont et al., 2007), where D is the
dimensionality of the data. As is evident from writing
the objective function of (1) as

w>Cw =
D∑

i=1

D∑
j=1

Cijwiwj , (2)

setting wk to zero excludes the k-th column and row of
C from the summation. For a given sparsity pattern
S = {i|wi 6= 0}, the optimal solution is the dominant
eigenvector of the corresponding submatrix of C. For
sparse PCA, the computationally hard part is there-
fore to identify the optimal sparsity pattern, and any
solution can potentially be improved by keeping S only
and recomputing the weights, a process called varia-
tional renormalization by Moghaddam et al. (2006).

Sparse PCA methods can be characterized by the fol-
lowing two paradigms:

1. Relaxation of the hard cardinality constraint
‖w‖0 ≤ K into a convex constraint ‖w‖1 ≤ B,
thus approximating the combinatorial problem by
continuous optimization of (1) on a convex feasi-
ble region.

2. Direct combinatorial optimization of S. Due
to the potentially exponential runtime of exact
methods, heuristics such as greedy search have to
be employed for large values of D.

Cadima and Jolliffe (1995) proposed thresholding the
(D −K) smallest elements of the dominant eigenvec-
tor to zero, which has complexity O(D2). Better re-
sults have been achieved by the SPCA algorithm of
Zou et al. (2004), which is based on iterative elastic
net regression. Combinatorial optimization was intro-
duced by Moghaddam et al. (2006), who derived an
exact branch-and-bound method and a greedy algo-
rithm, that computes the full sparsity path 1 ≤ K ≤ D
in O(D4). Based on a semi-definite relaxation of the
sparse PCA problem, d’Aspremont et al. (2007) pro-
posed PathSPCA, which reduces the complexity of
each greedy step to O(D2), and renders computation
of the full regularization path possible in O(D3). Fi-
nally, Sriperumbudur et al. (2007) formulate sparse
PCA as a d.c. program (Horst et al., 2000) and provide
an iterative algorithm called DC-PCA, where each it-
eration consists of solving a quadratically constrained
QP with complexity O(D3).

Non-negative (sparse) PCA was proposed by Zass and
Shashua (2006). In contrast to the methods dis-
cussed so far, their algorithm (called NSPCA) opti-
mizes the cumulative variance of L components jointly,

versus a sequential approach that computes one com-
ponent after another. Orthonormality of the compo-
nents is enforced by a penalty in the objective function
(see section 4 for a discussion about orthogonality for
non-negative components), and the desired sparsity is
again expressed in terms of the whole set of L compo-
nents.

Our Contribution. To our knowledge, there is no al-
gorithm either for sparse or non-negative sparse PCA
that achieves competitive results in less than O(D3).
In this paper, we propose an O(D2) algorithm that
enforces sparsity, or non-negativity or both constraints
simultaneously in the same framework, which is rooted
in expectation-maximization for a probabilistic gener-
ative model of PCA (see next section). As for the
combinatorial algorithms, the desired cardinality can
be expressed directly as K = |S|, instead of a bound
B on the l1 norm of w (which requires searching for
the appropriate value). Although computing the full
regularization path is also of order O(D3), our method
directly computes a solution for any K in O(D2), in
contrast to forward greedy search which needs to build
up a solution incrementally. As is the case with SPCA,
our method works on the data matrix X ∈ RN×D (N
is the number of samples), instead of the covariance
matrix C. To summarize, the low complexity com-
bined with an efficient treatment of the D � N case
enables an application of our method to large data sets
of high dimensionality.

Notation. Vectors are indexed as w(t), and elements
of vectors as wi. ‖w‖1 =

∑
i |wi| and ‖w‖0 = |S|,

where S = {i|wi 6= 0}. ‖w‖0 is also called the car-
dinality of w. I is the identity matrix, 0 a vector of
zero elements, and w � 0 ⇔ ∀i : wi ≥ 0. x ◦ y
denotes element-wise multiplication of x and y, and
tr(X) =

∑
iXii is the trace of matrix X. E[.] is the

expectation operator, and N denotes a Gaussian dis-
tribution.

2. EM for Probabilistic PCA

Tipping and Bishop (1999) and independently Roweis
(1998) proposed a generative model for PCA, where
the full covariance matrix Σ ∈ RD×D of the Gaussian
distribution is approximated by its first L eigenvectors
(in terms of magnitude of the respective eigenvalues).
The latent variable y ∈ RL (in the principal compo-
nent subspace) is distributed according to a zero mean,
unit covariance Gaussian

p(y) = N (0, I). (3)

The observation x ∈ RD, conditioned on the value
of the latent variable y, is linear-Gaussian distributed
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according to

p(x|y) = N (Wy + µ, σ2I), (4)

where the matrix W ∈ RD×L spans the principal sub-
space, and µ ∈ RD is the mean of the data. To sim-
plify the presentation, we will assume centered data
from now on.

The EM equations for probabilistic PCA have the fol-
lowing form. The E-step keeps track of

E[y(n)] = M−1
(t)W

>
(t)x(n) (5)

E[y(n)y>(n)] = σ2
t M−1

(t) + E[y(n)]E[y(n)]>, (6)

where M ∈ RL×L is defined as

M = W>W + σ2I. (7)

The M-step equations are

W(t+1) =

[
N∑

n=1

x(n)E[y(n)]>
][

N∑
n=1

E[y(n)y>(n)]

]−1

(8)

σ2
t+1 =

1
ND

N∑
n=1

[
‖x(n)‖22 − 2E[y(n)]>W>

(t+1)x(n)

+ tr
(
E[y(n)y>(n)]W

>
(t+1)W(t+1)

)]
. (9)

In order to efficiently incorporate constraints into the
EM algorithm (see next section), we make three sim-
plifications: take the limit σ2 → 0, consider a one-
dimensional subspace and normalize ‖w(t)‖2 to unity.
The first simplification reduces probabilistic PCA to
standard PCA. Computing several components will
be treated in section 4, and the unity constraint on
‖w(t)‖2 is easily restored after each EM iteration. The
E-step now amounts to

E[yn] = w>(t)x(n), (10)

and the M-step is

w(t+1) =
∑N

n=1 x(n)E[yn]∑N
n=1 E[yn]2

. (11)

These two equations have the following interpretation
(Roweis, 1998): The E-step orthogonally projects the
data onto the current estimate of the subspace, while
the M-step re-estimates the projection to minimize
squared reconstruction error for fixed subspace coordi-
nates. We summarize this result in algorithm 1, which
iteratively computes the solution to eq. (1). Due to
the fact that so far only ‖w‖2 = 1 is enforced, con-
vergence to the global optimum doesn’t depend on the
initial estimate w(1). This will no longer be the case
for additional constraints.

Algorithm 1 Iterative Computation of First PC
Input: Data X ∈ RN×D, initial estimate w(1), ε
Algorithm:
t← 1
repeat

y = Xw(t)

w(t+1) = arg minw

∑N
n=1 ‖x(n) − ynw‖22

w(t+1) ← w(t+1)/‖w(t+1)‖2
t← t+ 1

until |w>(t+1)w(t)| > 1− ε
Output: w

3. Constrained PCA

Consider the minimization step in algorithm 1, which
can be written as

w∗ = arg min
w

J(w) := hw>w − 2f>w, (12)

with h =
∑N

n=1 y
2
n and f =

∑N
n=1 ynx(n). Eq. (12) is

a quadratic program (QP), and is convex due to the
non-negativity of h. Furthermore, because the Hes-
sian is a scaled identity matrix, the problem is also
isotropic. The unique global optimum is found by an-
alytical differentiation of the objective function

∇J != 0⇒ w∗ =
f
h
, (13)

which of course is identical to eq. (11).

3.1. Sparsity

It is well known (Tibshirani, 1996) that solving a QP
under an additional constraint on ‖w‖1 favors a sparse
solution. This constraint corresponds to restricting the
feasible region to an l1 diamond:

w◦ = arg min
w

(
hw>w − 2f>w

)
(14)

s.t. ‖w‖1 ≤ B,

where the upper bound B is chosen such that w◦ has
the desired cardinality. The l1 constrained QP is again
convex, and because the objective function is isotropic,
it implies that w◦ is the feasible point minimizing l2
distance to the unconstrained optimum w∗.

We derive an efficient and optimal algorithm for eq.
(14), where the desired cardinality can be specified di-
rectly by the number K of non-zero dimensions. Ob-
serve that w◦ must have the same sign structure as f ,
therefore we can transform the problem such that both
w∗ and w◦ come to lie in the non-negative orthant.
The algorithm (illustrated in fig. 1) approaches w◦
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with axis-aligned steps in the direction of the largest
element of the negative gradient

−∇J(w) ∝ w∗ −w, (15)

until the boundary of the feasible region is hit or the
gradient vanishes. Because the elements of w become
positive one after another, and their magnitude in-
creases monotonically, B is set implicitly by terminat-
ing the gradient descent once the cardinality of the so-
lution vector is K. Finally, the solution is transformed
back into the original orthant of w∗.

Proposition 3.1 Axis-aligned gradient descent with
infinitesimal stepsize terminates at the optimal feasible
point w◦.

Proof. Optimality is trivial if w∗ lies within the feasi-
ble region, so we consider the case where the l1 con-
straint is active. The objective function in eq. (14) is
equivalent to

‖w∗ −w‖22 =
D∑

d=1

(w∗d − wd)2 . (16)

The gradient descent procedure invests all available co-
efficient weight B into decreasing the largest term(s)
of this sum, which follows from eq. (15). We show
equivalence of w◦ to the gradient descent solution v
by contradiction. Suppose the computation of w◦ fol-
lows a different strategy, so at least one summation
term (w∗l −w◦l )2 is larger than maxd(w∗d − vd)2. How-
ever, subtracting a small amount from w◦s (s 6= l) and
adding it to w◦l doesn’t change ‖w◦‖1 but decreases
the objective, which is a contradiction. �

Implementation of axis-aligned gradient descent
amounts to sorting the elements of −∇J(w) in de-
scending order (an O(D logD) operation), and iter-
ating over its first K elements. At each iteration
k ∈ {1, . . . ,K}, the first k elements of w are manip-
ulated, resulting in complexity O(K2) for the whole
loop. Algorithm 2 provides a full specification of the
method. Because EM is a local optimizer, the ini-
tial direction w(1) must be chosen carefully to achieve
good results. For sparse PCA, initialization with the
unconstrained first principal component gave best re-
sults (see section 5). Initialization is therefore the most
expensive operation of the algorithm with its O(D2)
complexity. For the D � N case, it can be reduced
to O(N2) by working with XX> instead of X>X. As
initialization is independent of K, w(1) can be cached
and re-used when varying the sparsity parameter. The
number of EM iterations t until convergence also de-
pends on D and K, but our experiments (see section 5)

w1

w2

B

w*

w°

Figure 1. Starting at the origin, w◦ is approached by axis-
aligned steps in the direction of the largest element of the
negative gradient. As dimensions enter the solution vec-
tor one after another, and the corresponding weights wi

increase monotonically, the bound B is set implicitly by
terminating once ‖w‖0 = K.

suggest that dependence is weak and sub-linear. On
average, t < 10 iterations were sufficient to achieve
convergence.

3.2. Non-Negativity

Enforcing non-negativity is achieved in the same way
as sparsity. Here, the the feasible region is constrained
to the non-negative orthant, which is again a convex
domain:

w◦ = arg min
w

(
hw>w − 2f>w

)
(17)

s.t. w � 0.

Eq. (17) implies that choosing wi = 0 for fi < 0 is
optimal. The non-negativity constraint can then be
dropped, and optimization for the other elements of w
proceeds as before.

The first PC is invariant to a change of sign. How-
ever, this symmetry is broken if the non-negativity
constraint is enforced. As an extreme example, non-
negative EM fails if the initial projection w(1) is a dom-
inant eigenvector that only consists of non-positive el-
ements - the minimum of eq. (17) is the zero vector.
But changing the sign of w(1) implies that the non-
negativity constraint becomes inactive, and the algo-
rithm terminates immediately with the optimal solu-
tion. We choose to initialize EM for non-negative PCA
with a random unit vector in the non-negative orthant,
which exploits the benefit of random restarts.

For non-negative sparse PCA, the feasible region is
defined as the intersection of the non-negative orthant
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Algorithm 2 EM for Sparse PCA
Input: X ∈ RN×D, K ∈ {1, . . . , D − 1}, ε
Algorithm:
t← 1
w(t) ← first principal component of X
repeat

y← Xw(t)

w∗ ←
∑N

n=1 ynx(n)/
∑N

n=1 y
2
n

s ← elements |w∗i | sorted in descending order
π ← indices of sorting order
w(t+1) ← 0
for k = 1 to K do

Add (sk − sK+1) to element k of w(t+1)

end for
Permute elements of w(t+1) according to π−1

w(t+1) ← w(t+1) ◦ sign(w∗)/‖w(t+1)‖2
t← t+ 1

until |w>(t+1)w(t)| > 1− ε
Output: w

and the l1 diamond. As the intersection of two convex
sets is again convex, the combined constraints can be
treated in the same framework. We establish conver-
gence of our method in the following proposition:

Proposition 3.2 EM for sparse and non-negative
PCA converges to a local minimum of the l2 recon-
struction error.

Proof. Given a feasible w(t) (either by proper initial-
ization or after one EM iteration), both the E-step
and the M-step never increase l2 reconstruction error.
Orthogonal projection y = Xw in the E-step is the
l2 optimal choice of subspace coordinates for given w.
Error minimization w.r.t. w in the M-step either re-
covers w(t) as it is feasible, or provides an improved
w(t+1). �

4. Several Components

A full eigen decomposition of the covariance matrix C
provides all r PCs, where r is the rank of C. Sorted in
descending order of eigenvalue magnitude, each eigen-
vector maximizes the variance of the projected data,
under the constraint that it is orthogonal to all other
components considered so far. For sparse PCA, we
compute more than one component by means of iter-
ative deflation: having identified the first component
w(1), project the data to its orthogonal subspace using

P = I−w(1)w>(1), (18)

re-run EM to identify w(2), and so on. Although defla-
tion suffers from numerical errors that accumulate over

each iteration, this inaccuracy is not a serious problem
as long as the desired number of components L is small
compared to r (which is true in many applications of
PCA).

Desiring non-negativity and orthogonality implies that
each feature can be part of at most one component:

w
(l)
i > 0⇒ w

(m)
i = 0 (19)

for m 6= l, i.e. the sparsity patterns have to be dis-
joint: Sl

⋂
Sm = ∅, for l 6= m and Sl = {i|w(l)

i > 0}.
This constraint might be too strong for some applica-
tions, where it can be relaxed to require a minimum
angle between components. This quasi -orthogonality
is enforced by adding a quadratic penalty term

αw>VV>w, (20)

to eq. (17), where V =
[
w(1)w(2) · · ·w(l−1)

]
contains

previously identified components as columns, and α
is a tuning parameter. Because VV> is also positive
semi-definite, the QP remains convex, but the Hes-
sian is no longer isotropic. We have used the standard
Matlab QP solver, but there exist special algorithms
for this case in the literature (Sha et al., 2007).

5. Experimental Results

We report performance and efficiency of our method
in comparison to three algorithms: SPCA2 and Path-
SPCA3 for cardinality constrained PCA, and NSPCA4

for non-negative sparse PCA. SPCA was chosen be-
cause it has conceptual similarities to our algorithm:
both are iterative methods that solve an l1 constrained
convex program, and both use the data matrix instead
of the covariance matrix. PathSPCA was chosen be-
cause it is (to our knowledge) the most efficient com-
binatorial algorithm. We are not aware of any other
non-negative PCA algorithm besides NSPCA.

The data sets considered in the evaluation are the fol-
lowing:

1. CBCL face images (Sung, 1996): 2429 gray scale
images of size 19×19 pixels, which have been used
in the evaluation of (Zass & Shashua, 2006).

2. Leukemia data (Armstrong et al., 2002): Expres-
sion profiles of 12582 genes from 72 patients. Sim-

2We use the Matlab implementation of SPCA by Karl
Sjöstrand, available at http://www2.imm.dtu.dk/~kas/
software/spca/index.html.

3Available from the authors at http://www.princeton.
edu/~aspremon/PathSPCA.htm.

4Available from the authors at http://www.cs.huji.
ac.il/~zass/.



Expectation-Maximization for Sparse and Non-Negative PCA

0 50 100 150
0

20

40

60

80

100

120

Cardinality

V
ar

ia
nc

e

emPCA
emPCAopt

SPCA
SPCAopt

PathSPCA

0 50 100 150
0

20

40

60

80

100

120

140

Cardinality

V
ar

ia
nc

e

emPCA
SPCA
PathSPCA
Thresholding

0 50 100 150 200 250 300 350 400
10−2

10−1

100

101

102

Cardinality

C
P

U
 T

im
e 

[s
]

emPCA
SPCA
PathSPCA

Figure 2. Left: Variance versus cardinality trade-off curves for the face image data. “opt” subscripts denote variance after
recomputing optimal weights for a given sparsity pattern (which is not necessary for PathSPCA). Middle: Variance versus
cardinality trade-off curves for the gene expression data. Performance of simple thresholding was included for reference.
Right: Running times of Matlab implementations on the gene expression data, which include renormalization for SPCA
and emPCA.

ilar data sets have been used in the evaluation of
(Zou et al., 2004) and (d’Aspremont et al., 2007).

The two data sets cover the N > D and D � N case
and are large enough, such that differences in com-
putational complexity can be established with confi-
dence. For the experiments of section 5.1 and 5.2, the
features were standardized to unit variance. For unsu-
pervised gene selection (section 5.3), not standardizing
the variance led to significantly better results.

5.1. Sparse PCA

Figure 2 (left) plots explained variance versus cardinal-
ity for SPCA, PathSPCA and our algorithm (called
emPCA) on the face image data set. Variational
renormalization is necessary for SPCA and emPCA to
close the performance gap to PathSPCA, which com-
putes optimal weights for a specific sparsity pattern by
construction. Figure 2 (middle) shows analogous re-
sults for the gene expression data. As a reference, we
have also plotted results for simple thresholding (after
renormalization).

We have also measured running times of Matlab im-
plementations of the algorithms. CPU time was mea-
sured using Matlab’s tic and toc timer constructs,
running on an Intel Core 2 Duo processor at 2.2GHz
with 3GB of RAM. Our focus is not to report abso-
lute numbers, but rather demonstrate the dependency
on the choice of K. Figure 2 (right) plots the run-
ning times versus cardinality on the gene expression
data. The PathSPCA curve is well explained by the
incremental forward greedy search. SPCA is harder to
analyze, due to its active set optimization scheme: at
each iteration of the algorithm, active features are re-
examined and possibly excluded, but might be added
again later on. emPCA is only marginally affected by

the choice of K, but shows an increased number of
EM iterations for 10 ≤ K ≤ 25, which was observed
on other data sets as well.

5.2. Non-Negative PCA

The impact of the non-negativity constraint on the
explained variance depends on the sign structure of
w∗. Because the first principal component for the face
image data happens to lie in the non-negative orthant,
we projected the data onto its orthogonal subspace
such that the constraint becomes active. Figure 3 (left)
shows the variance versus cardinality trade-off curves
for non-negative sparse PCA. For NSPCA, the sparsity
penalty β was determined for each K using bisection
search, which was aborted when the relative length of
the parameter search interval was below a threshold of
10−5. Both the variance achieved and the number of
cardinalities for which a solution was found strongly
depend on the value of α, which corresponds to a unit
norm penalty (for the case of a single component).
For smaller values of α the performance of NSPCA is
comparable to emPCA, but only solutions close to the
full cardinality are found. Increasing the magnitude
of α makes it possible to sweep the whole cardinality
path, but the performance degrades.

Because both algorithms are initialized randomly, we
chose the best result after ten restarts. Running times
for both methods showed no strong dependency on K.
Average times for K ∈ {1, . . . , 100} were 0.4s for em-
PCA (0.15s standard deviation) and 24s for NSPCA
(14.7s standard deviation).

We already motivated in section 4 that requiring or-
thogonality between several non-negative components
can be restrictive. If the first PC happens to lie in the
non-negative orthant, the constraints have to be mod-
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ified such that more than one component can satisfy
them. We have explored the following two strategies:

1. Enforcing orthogonality, but constraining the car-
dinality of each component.

2. Relaxing the orthogonality constraint, by enforc-
ing a minimum angle between components in-
stead.

There is a methodological difficulty in comparing the
performance of NSPCA and emPCA. The former max-
imizes cumulative variance of all components jointly,
while our algorithm computes them sequentially, max-
imizing the variance under the constraint that subse-
quent components are orthogonal to previous ones (see
section 4). We therefore expect emPCA to capture
more variance in the first components, while NSPCA
is expected to capture larger cumulative variance. Fig-
ure 3 (middle) shows the results of applying the first
strategy to the face image data. The NSPCA sparsity
penalty β was tuned to achieve a joint cardinality of
200 for all components. For emPCA we distributed
the active features evenly among components by set-
ting K = 20 for all of them. As in figure 3 (left),
emPCA captures significantly more of the variance,
suggesting that the way NSPCA incorporates sparsity
seriously degrades performance. This observation was
confirmed for various values of K and L.

Finally, figure 3 (right) reports results for the second
strategy, where a minimum angle of 85 degrees was
enforced between components. Here, the complemen-
tary objectives of NSPCA and emPCA match with our
prior expectations. Again, various values for L and
minimum angle lead to essentially the same behavior.

5.3. Unsupervised Gene Selection

We apply emPCA to select a subset of genes of the
leukemia data, and measure subset relevance by fol-
lowing the evaluation methodology of Varshavsky et al.
(2006). For each gene subset, we cluster the data us-
ing k-means (k = 3), and compare the cluster assign-
ments to the true labeling of the data, which differenti-
ates between three types of leukemia (ALL, AML and
MLL). Agreement is measured using Jaccard scores
(Varshavsky et al., 2006), where a value of one signi-
fies perfect correspondence between cluster assignment
and label. We compare emPCA to simple ranking of
the CE criterion as proposed by the authors, which
has shown competitive performance to other popular
gene selection methods. Figure 4 shows that selecting
70 genes according to the first non-negative sparse PC
results in a significantly better Jaccard score than a
clustering of the full data set.
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Figure 4. Mean and standard deviation for Jaccard scores
after subset selection and k-means clustering (k = 3), aver-
aged over 100 random initializations of the centroids. The
full data score is shown as the solid line. A small amount
of jitter has been added to better distinguish error bars.

6. Conclusions

We have presented a novel algorithm for constrained
principal component analysis, based on expectation-
maximization for probabilistic PCA. Our method is
applicable to a broad range of problems: it includes
sparsity, non-negativity or both kinds of constraints,
it has an efficient formulation for N > D and D � N
type of data, and it enforces either strict or quasi-
orthogonality between successive components. Desired
sparsity is directly specified in the number of non-
zero elements, instead of a bound on the l1 norm
of the vector. We have demonstrated on popular
data sets from biology and computer vision that our
method achieves competitive results for sparse prob-
lems, and that it shows significant improvements for
non-negative sparse problems. Its unmatched compu-
tational efficiency enables a constrained principal com-
ponent analysis of substantially larger data sets and
lower requirements on available computation time.

Although our algorithm is rooted in expectation-
maximization for a generative model of PCA, con-
straints are added at the optimization stage. In the fu-
ture, we will study how to include them in the model it-
self, which would enable a Bayesian analysis and data-
driven determination of the proper sparsity and num-
ber of components. Secondly, we intend to examine
whether our algorithm can be extended to the related
problem of constrained linear discriminant analysis.

Matlab code for emPCA is available at http://www.
inf.ethz.ch/personal/chrsigg/icml2008.
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Figure 3. Left: Variance versus cardinality trade-off curves for non-negative sparse PCA methods on face image data.
For NSPCA, the sparsity penalty β was determined using bisection search (see text). Values indicate better result
after ten random restarts. Middle: Cumulative variance versus number of orthogonal components. For NSPCA, β
was tuned to achieve a joint cardinality of 200 for all components. For emPCA, we set K = 20 for every component.
emPCA (without non-negativity constraints) is plotted for reference. Right: Cumulative variance versus number of
quasi-orthogonal components. A minimum angle of 85 degrees was enforced between components.
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