Speech Enhancement using Generative Dictionary Learning

Christian D. Sigg, Member, IEEE, and Tomas Dikk, and Joachim M. Buhmann, Senior Member, IEEE

Abstract—The enhancement of speech degraded by real-world interferers is a highly relevant and difficult task. Its importance arises from the multitude of practical applications, whereas the difficulty is due to the fact that interferers are often non-stationary and potentially similar to speech. The goal of monaural speech enhancement is to separate a single mixture into its underlying clean speech and interferer components. This under-determined problem is solved by incorporating prior knowledge in the form of learned speech and interferer dictionaries. The clean speech is recovered from the degraded speech by sparse coding of the mixture in a composite dictionary consisting of the concatenation of a speech and interferer dictionary. Enhancement performance is measured using objective measures and is limited by two effects. A too sparse coding of the mixture causes the speech component to be explained with too few speech dictionary atoms, which induces an approximation error we denote source distortion. However, a too dense coding of the mixture results in source confusion, where parts of the speech component are explained by interferer dictionary atoms and vice-versa. Our method enables the control of the source distortion and source confusion trade-off, and therefore achieves superior performance compared to powerful approaches like geometric spectral subtraction and codebook-based filtering, for a number of challenging interferer classes such as speech babble and wind noise.

Index Terms—Speech enhancement, dictionary learning, sparse coding.

I. INTRODUCTION

Enhancing speech degraded by non-stationary real-world interferers is both an important and difficult task. The importance arises from many signal processing applications, including hearing aids, mobile communications, and pre-processing for speech recognition. The difficulty of speech enhancement in these applications arises from the nature of the encountered interferers, which often are non-stationary and potentially speech-like, thereby inducing a significant and time-varying spectral overlap between speech and interferer.

The goal of speech enhancement is twofold: to improve both the perceived quality and the intelligibility of speech, by attenuating the interferer without substantially degrading the speech. Speech of higher quality is perceived as being more comfortable to listen to, for longer periods of time, whereas higher speech intelligibility is measured by lower word error rates in speech recognition scenarios.

Ideally, the performance of speech enhancement algorithms is measured by conducting subjective listening tests with human listeners. Objective measures are designed to approximate subjective quality scores and intelligibility rates. Most objective measures quantify improvement by comparing the (unobserved) clean speech with the degraded speech and the enhanced speech in a perceptually meaningful way. As a consequence, performance evaluation has to be conducted on synthetic mixtures of clean speech and interferer signals.

We consider the setting of a one-to-one conversation in a natural environment, recorded by a single microphone. This setup can be modeled as a linear additive mixture of target clean speech and interferer

\[x(n) = s(n) + i(n), \]

where \(x(n) \) is the time-domain mixture signal at sample \(n \), and \(s(n) \) and \(i(n) \) are the time-domain speech and interferer signals. Recovering the clean speech signal from the mixture is under-determined without additional assumptions. Our enhancement approach is based on transforming time-domain signals into a suitably chosen feature space, and sparse coding in this feature space using signal models for both the speech and the interferer (called dictionaries). Since speech and many kinds of interferers contain structure, their structured component can be sparsely coded in coherent dictionaries. If both the speech and interferer dictionary is coherent only to its respective structured component in the mixture signal, sparse coding is able to separate the mixture into its structured components and to suppress any unstructured component (i.e. random noise) that is incoherent to both dictionaries. Finally, an estimate of \(s(n) \) is obtained by performing the inverse transform from the feature space back to the time-domain.

Since clean speech is never observable in the environment where enhancement is to take place, we learn the speech
dictionary on a training corpus. Speech is a well-structured signal class, therefore a pre-trained model remains largely valid during enhancement, even in the speaker independent case. The contrary is true for the interferer, which varies considerably depending on the environment, and which might be a superposition of several sources, requiring a single general interferer model to be prohibitively complex. On the other hand, the interferer can be observed during segments of speech inactivity. Therefore, training data for an interferer model can be obtained from speech pauses, resulting in an interferer dictionary which is specific to the current environment and which does not have to generalize to other environments. In this work, we presuppose that a conservative voice activity detector (VAD) is available to obtain observations of the interferer signal for dictionary learning. A VAD which is not conservative enough could cause speech signal components to be present in the interferer dictionary training data, and as a consequence, enhancement performance likely degrades. Evaluation using a non-ideal VAD is beyond the scope of this paper and is considered in future work. For the speech enhancement itself, no knowledge of speech activity is necessary. This paper extends our preliminary results reported in [30].

A. Related Work in Speech Enhancement

Our method falls into the class of environment-adapted algorithms [13], [14], which incorporate specific knowledge about the environment where speech enhancement is to be performed. Spectral subtraction (Sec. I-A1) employs a point estimate of the average interferer magnitude spectrum. Codebook-based spectral filtering (Sec. I-A2) approximates the distribution of both the speech and interferer magnitude spectra using a codebook of spectral prototypes. Finally, source separation based on sparse coding (Sec. I-A3) models both the speech and the interferer signal classes using a sparse linear combination of atoms from a respective dictionary.

1) Spectral Subtraction: The transformation of the mixture equation (1) into the short-time Fourier domain,

\[X(\omega, n) = S(\omega, n) + I(\omega, n), \]

where \(X(\omega, n) \), \(S(\omega, n) \) and \(I(\omega, n) \) denote the complex mixture, speech and interferer spectra at frequency \(\omega \) and time \(n \), respectively, suggests the following principle [3]: an estimate of the clean speech spectrum is obtained by subtracting an estimate of the interferer spectrum from the observed mixture spectrum. Typically, only the magnitude \(|I(\omega, n)| \) of the spectrum or the power spectrum \(|I(\omega, n)|^2 \) is estimated (e.g. during speech pauses), and as a consequence the additivity of (2) only holds in approximation. The time-domain speech signal estimate is obtained by inverse Fourier transformation of the estimated speech magnitude spectrum or power spectrum using the phase of the mixture signal.

In many relevant cases, modeling the interferer signal using a single spectral prototype is insufficient, due to the non-stationarity of the encountered interferers. Geometric spectral subtraction [17] preserves the additivity of (2) by taking the phase of the complex Fourier coefficients into account, and the estimate of the interferer spectrum is updated for each frame using minimum statistics [22]. This method is further discussed in Sec. V-A.

2) Codebook-based spectral filtering: Whereas spectral subtraction employs a point estimate of the interferer spectrum, codebook-based spectral filtering models either the speech, the interferer or both using vector codebooks. Ellis and Weiss [12] trained a speaker dependent codebook using vector quantization (VQ), and projected the mixture onto the closest clean speech prototype for enhancement. Srinivasan et al. [32] trained linear prediction coefficient (LPC) codebooks for both the speech and the interferer. The observed mixture spectrum is assumed to be a linear combination of exactly two spectral prototypes (with associated gains), one from the speech and the other from the interferer codebook. The selected prototype pair is used to estimate the underlying clean speech by Wiener filtering of the mixture signal. Roweis [26] enforces a temporal dependency between consecutive codings of observations using a factorial hidden Markov model.

Although codebooks are much more sophisticated signal models, the major drawback of this paradigm is the induced quantization error due to the maximally sparse coding. To reduce the quantization error to an acceptable level, a very large speech codebook [12], interpolation [32] or averaging over all possible vector pairs [33] is required (see Sec. V-B for further discussion).

3) Sparse coding for source separation: Structured signal classes like speech have approximately sparse representations in suitably chosen dictionaries. This key observation underlies source separation methods based on sparse coding. In coherent denoising [21], an estimate of clean speech can be recovered from a mixture of speech and Gaussian white noise by capturing the components that are coherent to the speech dictionary, because unstructured interferers such as Gaussian white noise are incoherent to any fixed dictionary [24]. A dictionary element (called atom) is coherent to a signal if the absolute value of the inner product of the two vectors is large. For an orthonormal basis as the speech dictionary, the energy in the coding coefficients of an unstructured interferer is distributed uniformly over all dictionary elements. A soft thresholding of the coding coefficients results in a close to optimal estimate of the clean speech [9].

However, as interferers become more structured and similar to speech, the coherence to the speech dictionary grows. In the case of structured interferers, better performance can be achieved by coding the mixture in a composite dictionary consisting of a speech and an interferer dictionary. Speech components are captured by the speech dictionary, as they are more coherent to the speech dictionary, but less so to the interferer dictionary. For the same reason, structured interferer components are captured by the interferer dictionary instead of being explained by many speech dictionary atoms.
with low associated weights. Any unstructured interferer component is again incoherent to both dictionaries.

Therefore, sparse coding for speech enhancement requires adapted dictionaries, as general analytic dictionaries (such as wavelet bases) typically do not satisfy both coherence and incoherence requirements. Adaptation of an initial dictionary to the signal class can be achieved using dictionary learning, which is a generalization of VQ [1]. From this perspective, the codebook-based enhancement approaches of the previous section can be seen as a special case of sparse coding for speech enhancement, where a maximally sparse coding of the mixture is enforced.

\[D = \begin{bmatrix} D^{(s)} & D^{(i)} \end{bmatrix} \]

Figure 1. Our dictionary learning and speech enhancement pipeline. The top part shows the dictionary learning step, where, separately for the speech and the environment specific interferer, training data is transformed into the feature space (FT), and a dictionary is learned (DL). Both dictionaries \(D^{(s)} \) and \(D^{(i)} \) are combined into a composite dictionary \(D \) for speech enhancement. The bottom part shows the enhancement step for a single observation of degraded speech. It is transformed into the feature space, and \(x \) is sparsely coded in \(D \) using LARC. The sparse code \(c \) is separated into \(c^{(s)} \) and \(c^{(i)} \), to obtain estimates \(\hat{s} \) and \(\hat{i} \) of the clean speech and interferer contributions to \(x \). For the MDCT feature domain, \(\hat{s} \) is directly inverse transformed (IFT) back to the time domain. For the STFT magnitude domain, a filter \(f \) is built based on \(\hat{s} \) and \(\hat{i} \) and applied to \(x \), followed by the IFT of the filtered \(x \) back to the time domain.

\[\hat{s} = D^{(s)} c^{(s)} \]
\[\hat{i} = D^{(i)} c^{(i)} \]

B. Method Overview

What follows is a high-level overview of our method, illustrated in Fig. 1. The time-domain signal is transformed (FT in the figure) into either the short-time Fourier (STFT) magnitude domain or the modified discrete cosine (MDCT) domain [23]. The feature transform needs to be invertible to allow for the re-synthesis of the time-domain signal of the enhanced speech. The MDCT is directly invertible, but in the case of STFT magnitudes, the mixture phase is used for re-synthesis. In the transform domain, overlapping blocks are extracted and vectorized, and these vectors form the elements of our feature space (Sec. VI-C).

Possibly over-complete dictionaries (Sec. III) are trained for speech (either speaker dependent or independent) and the environment specific interferer (DL in the figure). For sparse coding (Sec. II) in the dictionary learning algorithm, we extended the least angle regression (LARS) algorithm [11] to include a residual coherence stopping criterion and optimized it to solve a large number of simultaneous coding problems efficiently. A C implementation of the algorithm with a Matlab interface is available from the authors\(^1\). For the dictionary update step, we use the fast approximate SVD update of [28]. Identical algorithm parameters (such as dictionary size or residual coherence threshold) are used for training both the speech and the interferer dictionary, in all tested environments. The trained dictionaries are concatenated to form the composite dictionary.

In the enhancement step (Sec. IV, bottom half of Fig. 1), an observation of degraded speech is sparsely coded in the composite dictionary. As a result, the mixture of speech and interferer is explained by a linear combination of atoms from the speech dictionary and of atoms from the interferer dictionary. For the MDCT, the clean speech estimate is directly inverse transformed (IFT in the figure) back to the time domain. For the STFT magnitude domain, a filter is built from the clean speech and interferer magnitude estimates, and is applied to the mixture magnitude. The filtered mixture magnitude is combined with the mixture phase to re-synthesize the time domain signal.

As will be explained in Sec. IV-B, estimation errors result from two different and competing effects. A too sparse coding of the degraded speech in the composite dictionary induces an approximation error of the clean speech, which we call source distortion. A too dense coding avoids source distortion, but causes source confusion, by explaining some of the speech energy using interferer atoms. In order to achieve low source distortion for a sparse coding, the dictionaries must be coherent to their respective signal class. To avoid source confusion, the trained dictionaries must have low mutual coherence, i.e. the speech dictionary must be incoherent to the interferer signal, and vice-versa. Good speech enhancement performance can be achieved by choosing a feature space which is high dimensional enough such that low mutual coherence becomes feasible, and by training sufficiently powerful dictionaries such that a low approximation error is achieved with sparse codings.

C. Contributions of Paper

Our algorithm attains significant speech quality and intelligibility improvements (Sec. VI) in challenging environments, where the interferer signal is non-stationary, potentially similar to speech and where the speech to interferer power ratio (SIR) is low. Contrary to spectral subtraction, our approach does not assume a stationary interferer, and contrary to denoising by sparse coding in analytic dictionaries, it can attenuate interferers that are partially coherent to the speech signal.

We propose an extension of the least angle regression (LARS) algorithm of Efron et al. [11] for dictionary learning and sparse coding, where instead of using the residual norm or the coding cardinality as the stopping criterion, the

\(^1\)http://sigg-itpen.ch/research/taslp2012/
algorithm terminates if the coherence between the current residual and the dictionary is below a chosen threshold. Furthermore, the algorithm is reformulated such that coding many observations in the same dictionary becomes much more efficient. Our algorithm is called LARC, for least angle regression with a coherence criterion.

We propose a blocking scheme in the feature domain (discussed in Sec. VI-C), which enables a trade-off between time and frequency resolution of the dictionary atoms. Enhancement can be performed in the MDCT domain, which facilitates direct inversion of the speech estimate, or it can be performed in the STFT domain, where either the speech magnitude estimate is combined with the mixture phase, or the speech and interferer magnitudes provide estimates of the instantaneous a-priori and a-posteriori SNR, from which a suppression rule is derived for filtering the mixture magnitude (see Sec. V-A).

Our algorithm has conceptual similarities to the non-stationary noise reduction algorithm of Schmidt and Larsen [29], which is based on a non-negative latent variable decomposition model of the speech and the interferer signal, and to work by Wilson et al. [36], which employs non-negative matrix factorization (NMF) to train speech and interferer models, as well as to work by Smaragdis et al. [31], which applies probabilistic latent component analysis (PLCA) to train speech and interferer models. All these approaches enforce non-negativity constraints on both the dictionary and the coding matrices, and they are therefore only appropriate for non-negative feature domains. Our approach allows the code and the dictionary entries to assume values of the entire real domain. Furthermore, the residual coherence stopping criterion of LARC is invariant to changes in signal energy, and the same residual coherence threshold works well across different interferer signal classes and mixture SIRs, which are not known in advance.

D. Notation

Given a matrix \(\mathbf{A} \) and a column vector \(\mathbf{b} \), scalars \(i, j \), and ordered sets \(\mathcal{I}, \mathcal{J} \) of scalars, \(A_{i,j} \) denotes the scalar matrix element on row \(i \) and column \(j \); \(\mathbf{a}_{(i,:)} \) denotes the \(i \)-th row-vector of matrix \(\mathbf{A} \); \(\mathbf{a}_{(:,j)} \) denotes the \(j \)-th column-vector of matrix \(\mathbf{A} \); \(\mathbf{A}_{(\mathcal{I},\mathcal{J})} \) denotes the sub-matrix of \(\mathbf{A} \), consisting of all elements of \(\mathbf{A} \) which are on rows indexed by \(\mathcal{I} \) and on columns indexed by \(\mathcal{J} \). \(\mathbf{b}^\top \) denotes a row-vector, \(\mathbf{b}_\mathcal{I} \) denotes the column-vector consisting of all elements of \(\mathbf{b} \) indexed by \(\mathcal{I} \), and \(b_i \) denotes the \(i \)-th element of vector \(\mathbf{b} \). Sequences of matrices, vectors and scalars are indexed by \(\mathbf{A}^{(i)}, \mathbf{b}^{(i)} \) and \(c^{(i)} \).

II. SPARSE CODING

The goal of sparse coding is to approximate a signal observation with low error, using a linear combination of only a few signal prototypes from a pre-specified set of prototypes. More formally, a \(K \)-sparse coding \(\mathbf{c} \in \mathbb{R}^L \) of a single signal frame \(\mathbf{x} \in \mathbb{R}^D \) in a dictionary \(\mathbf{D} \in \mathbb{R}^{D \times L} \) of unit norm atoms \(\| \mathbf{d}_l \|_2 = 1, \forall l = 1, \ldots, L \) defines a sparse linear combination of \(K \ll L \) atoms. The cardinality \(\| \mathbf{c} \|_0 = K \) is the number of non-zero coefficients of \(\mathbf{c} \), and is also called the \(\ell_0 \) pseudo-norm of \(\mathbf{c} \). The dictionary \(\mathbf{D} \) can be over-complete, i.e. \(L > D \) is possible (and often desired).

Sparse coding lies at the core of our method, both in dictionary learning and in enhancement. It is a trade-off between three factors: the signal approximation error \(\| \mathbf{x} - \mathbf{Dc} \|_2 \) measured using the \(\ell_2 \) norm, the coding cardinality and the dictionary size. For structured signal classes such as speech, a dictionary exists such that a low approximation error can be achieved with a sparse coding. Such a dictionary is said to be coherent to the signal class, and the approximation error decays quickly as the coding cardinality increases. On the other hand, white noise is an unstructured signal class that is incoherent to any fixed dictionary [24], and the error decays slowly as the cardinality increases. Of course, zero approximation error is possible in both cases if \(\mathbf{D} \) spans the signal space, but for a coherent dictionary the error will be already sufficiently small for \(K \ll D \).

The sparse coding problem can be formulated using a cardinality constraint

\[
\mathbf{c}^* = \min_{\| \mathbf{c} \|_0 \leq K} \| \mathbf{x} - \mathbf{Dc} \|_2
\]

or using an error constraint

\[
\mathbf{c}^* = \min_{\| \mathbf{x} - \mathbf{Dc} \|_2 \leq \sigma} \| \mathbf{c} \|_0
\]

Solving either (3) or (4) using the \(\ell_0 \) pseudo-norm is an NP-hard combinatorial problem [6], an approximation scheme is therefore necessary. We discuss greedy optimization in Sec. II-A and convex relaxation of the \(\ell_0 \) norm to the \(\ell_1 \) norm in Sec. II-B.

A. Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) [7] computes an approximate solution to the sparse coding problem (3) or (4) using a greedy iterative update of \(\mathbf{c} \) (see Algorithm 1).

```
Algorithm 1 Orthogonal Matching Pursuit
1: Input: \( \mathbf{x} \in \mathbb{R}^D; \mathbf{D} \in \mathbb{R}^{D \times L}; K \) or \( \sigma \)
2: Output: \( \mathbf{c} \in \mathbb{R}^L \)
3: \( \mathcal{A} \leftarrow \{\}; \mathbf{c} \leftarrow 0; \mathbf{r} \leftarrow \mathbf{x} \)
4: while \( \| \mathbf{c} \|_0 \leq K \) and \( \| \mathbf{r} \|_2 > \sigma \) do
5: \( \mu \leftarrow \mathbf{D}^\top \mathbf{r} \)
6: \( j^* \leftarrow \arg \max_j \| \mu_j \|, j \in \mathcal{A}^c \)
7: \( \mathcal{A} \leftarrow \mathcal{A} \cup \{j^*\} \)
8: \( \mathbf{c}_\mathcal{A} \leftarrow (\mathbf{D}_\mathcal{A}^\top \mathbf{D}_\mathcal{A})^{-1} \mathbf{D}_\mathcal{A}^\top \mathbf{x} \)
9: \( \mathbf{r} \leftarrow \mathbf{x} - \mathbf{Dc} \)
10: end while
```

Each iteration \(t \) of the while-loop consists of two steps: atom selection and update of the coding vector. The atom that is most coherent to the current residual \(\mathbf{r}^{(t-1)} \) is selected, and its index \(j^* \) is added to the active set of atoms
\(\mathcal{A}\) in lines 5 to 7. Then \(c^{(i)}\) is set to the coordinates of the orthogonal projection of \(x\) onto the subspace spanned by \(D_{(\cdot,\mathcal{A})}\) in line 8, and the new residual \(r^{(i)}\) is computed in line 9. This procedure ensures that \(r^{(i)}\) is always orthogonal to the span of \(D_{(\cdot,\mathcal{A})}\) and that the set of selected \(l\) atoms is linearly independent. The algorithm terminates after \(|c^{(i)}|_0 = K\) or \(|x - Dc^{(i)}|_2 \leq \sigma\) is reached. OMP converges with an exponential rate, which depends on the coherence of the dictionary to the signal class [20].

B. Basis Pursuit and LASSO

Convex relaxation of the \(\ell_0\) pseudo-norm to the \(\ell_1\) norm is another way to solve the sparse coding problem approximately. In this case, the cardinality constrained formulation (3) is known as the LASSO [34], and the error norm constrained formulation (4) is known as Basis Pursuit Denoising [4]. Because both the objective function and the constraint are convex, the global minimum is unique and can be found efficiently using quadratic programming techniques.

In contrast to the \(\ell_0\) pseudo-norm, the \(\ell_1\) norm penalizes both the cardinality of the coding and the magnitude of the coding coefficients. The second property will be important for sparse coding in the concatenated dictionary, where large magnitude coefficients can lead to instabilities (see Sec. IV-B). If a sparse enough coding exists, the relaxed form is equivalent to the hard combinatorial problem, meaning that the sparsest coding can be found efficiently using the \(\ell_1\) norm [8].

1) **Least Angle Regression (LARS):** Least Angle Regression [11] is a very efficient iterative algorithm that obtains a solution closely resembling LASSO, and with a simple modification can be made to exactly obtain the LASSO solution. As with OMP, each iteration consists of an atom selection and a coding coefficient update step. Atom selection is identical to OMP. For the coefficient update, instead of an orthogonal projection onto the span of the selected atoms, LARS proceeds in the equiangular direction of the selected atoms, until a new atom has equal correlation with the residual as all atoms in the active set. Typically, either a cardinality-based or a norm-based stopping criterion is used (as with OMP).

2) **Batch LARS with Coherence Criterion (LARC):** We have extended LARS in two ways for our application. Both for dictionary learning and enhancement, a large number of observations have to be sparsely coded in the same dictionary. Pre-computing the Gram matrix \(G = D^\top D\) avoids repeated computations of matrix-vector products involving \(D\), which are the most expensive operations in LARS. In addition, the matrix inverse \(G_{(\cdot,\mathcal{A})}^{-1}\) is built iteratively using an update scheme based on the Cholesky factorization [28].

The second extension concerns the stopping criterion. As already mentioned in the introduction, an observation is a linear superposition of components, one of them coherent and one or more of them incoherent to the dictionary. Since only the coherent component can be sparsely coded in the dictionary, it can be separated from the other components by choosing the right value for the stopping criterion. Both OMP and LARS are greedy algorithms, therefore the coherent components will be coded before the incoherent components, and the maximum residual coherence (line 6 in algorithm 1) will decrease with every iteration [21]. This decrease suggests to use a residual coherence threshold \(\mu_{dl}\) as the stopping criterion, which in contrast to the \(\ell_2\) norm of the residual or the \(\ell_1\) norm of the coefficient vector does not depend on the magnitude of the observation.

LARC (see algorithm 2) consists of three parts: atom selection (lines 6 to 8), computation of the equiangular direction \(u\) (lines 12 to 16) and update of \(c\) using the step size \(\gamma\) (lines 17 to 21). “\(\min^+\)” denotes that the minimum is only over positive arguments.

Note that the computation of \(D^\top r^{(t-1)}\) in iteration \(t\) (line 6) is split into a constant part \(\mu^{(x)} = D^\top x\) and a variable part \(\mu^{(y)} = D^\top y^{(t-1)}\), which is updated efficiently in line 21. We have omitted the sequential Cholesky update of the matrix inverse \(G_{(\cdot,\mathcal{A})}^{-1}\), the details are given e.g. in [28].

Algorithm 2 Batch LARC

1: Input: \(x \in \mathbb{R}^D; D \in \mathbb{R}^{D \times L}; G = D^\top D; \mu_{dl}\)
2: Output: \(c \in \mathbb{R}^L\)
3: \(c \leftarrow 0; y \leftarrow 0; \mathcal{A} \leftarrow \{\}\)
4: \(\mu^{(x)} \leftarrow D^\top x; \mu^{(y)} \leftarrow 0\)
5: while \(|\mathcal{A}| < D\) do
6: \(\mu \leftarrow \mu^{(x)} - \mu^{(y)}\)
7: \(j^* \leftarrow \arg \max_j |\mu_j|, j \in \mathcal{A}^c\)
8: \(\mathcal{A} \leftarrow \mathcal{A} \cup \{j^*\}\)
9: if \(|\mu_{j^*}| / ||x - y||_2 < \mu_{dl}\) then
10: \(\text{break}\)
11: end if
12: \(s \leftarrow \text{sign}(\mu_{A})\)
13: \(g \leftarrow G_{(\cdot,\mathcal{A})}^{-1}s\)
14: \(b \leftarrow (g^\top s)^{-\frac{1}{2}}\)
15: \(w \leftarrow bg\)
16: \(u \leftarrow D_{(\cdot,\mathcal{A})}w\)
17: \(a \leftarrow G_{(\cdot,\mathcal{A})}w\)
18: \(\gamma \leftarrow \min_{k \in \mathcal{A}} \left(\frac{|\mu_{j^*} - \mu_k|}{b - a_k}, \frac{|\mu_{j^*} + \mu_k|}{b + a_k}\right)\)
19: \(y \leftarrow y + \gamma u\)
20: \(c_{\mathcal{A}} \leftarrow c_{\mathcal{A}} + \gamma w\)
21: \(\mu^{(y)} \leftarrow \mu^{(y)} + \gamma a\)
22: end while

III. DICTIONARY LEARNING

An iterative dictionary learning algorithm adapts an initial dictionary to a particular signal class, such that observations from that signal class are sparsely coded in the dictionary with small error. As will be discussed in Sec. IV, such adaptation is typically necessary for successful enhancement, because the ideal dictionary has to be both coherent to its signal class as well as incoherent to all other signals present in the mixture.
Formally, a dictionary learning algorithm approximately factorizes a data matrix \(X \in \mathbb{R}^{D \times N} \) consisting of observations \(x_{(i,n)} \), \(n = 1, \ldots, N \), into a dictionary \(D \in \mathbb{R}^{D \times L} \) and a coding matrix \(C \in \mathbb{R}^{L \times N} \). The factorization optimizes the objective
\[
\arg \min_{D,C} \| X - D \cdot C \|^2_F, \tag{5}
\]
subject to a sparsity constraint on \(C \) and the unit \(\ell_2 \) norm constraint on the atoms of \(D \). The approximation error is measured by the squared Frobenius norm \(\| \cdot \|^2_F \), i.e. the sum of squares of all matrix elements. Due to the fact that both \(D \) and \(C \) are unknown, the objective function (5) is not convex, and the sparsity constraint on \(C \) makes finding the global optimum intractable. However, several authors (see [27] for a review) have proposed efficient algorithms based on an alternating minimization of \(C \) and \(D \) until convergence to a local optimum. We present the batch version of iterative dictionary learning used to train the speech and interferer dictionaries for our experiments. A productive implementation of the speech enhancement pipeline would additionally use an online algorithm [19] to learn and update the interferer dictionary.

Initialization. The initial dictionary \(D^{(0)} \) can be defined in various ways. For instance, the atoms can be chosen uniformly at random on the unit hypersphere, or can be sampled from the training data \(X \), followed by rescaling to unit length.

Coding update. The squared Frobenius norm and the sparsity constraint are column separable, therefore minimizing the objective (5) for \(C \) given \(D \) amounts to \(N \) independent sparse coding problems, and in principle, any sparse coding algorithm (see Sec. II) is applicable. We use LARC in our experiments, i.e. given the previous dictionary \(D^{(t-1)} \), at iteration \(t \) of the dictionary learning algorithm each column \(c_{(i,n)}^{(t)} \), \(n = 1, \ldots, N \) of the coding matrix is updated as
\[
c_{(i,n)}^{(t)} \leftarrow \text{LARC} \left(D^{(t-1)}, x_{(i,n)}, \mu_{d_l} \right).
\]
The LARC sparse coding algorithm has three positive properties relevant to dictionary learning in our application. We have empirically observed that an \(\ell_1 \) norm based sparsity measure leads to better generalization performance of the dictionary than an \(\ell_0 \) norm based sparsity measure as employed by OMP (see below). Furthermore, the batch formulation of LARC is suited to solving a large number of independent coding problems given the same dictionary (see Sec. II-B2). Finally, setting the same residual coherence threshold for speech and all interferer types proved viable. A dictionary learning algorithm where the sparsity parameter had to be tuned would be unsuitable in our application, since the interferer properties are not known in advance.

Dictionary update. The dictionary update step
\[
D^{(t)} \leftarrow \arg \min_D \| X - D \cdot C^{(t)} \|^2_F \tag{6}
\]
s.t. \(\| d_{(:,l)} \|^2_2 = 1 \quad \forall l = 1, \ldots, L \)
is a least squares minimization problem with quadratic equality constraints, and can be solved e.g. using a Lagrangian dual formalism [15]. However, there is no need to find the exact minimum of (6), as long as the dictionary learning objective (5) is reduced in each iteration.

The K-SVD dictionary update step [1] is a greedy atom-by-atom update. For each atom \(d_{(:,l)} \), \(l = 1, \ldots, L \), the contribution to the residual norm due to \(d_{(:,l)} \) is isolated as
\[
\| X - D \cdot C \|^2_F = \left\| X - \sum_{m \neq l} d_{(:,m)} c_{(m,\cdot)} - d_{(:,l)} c_{(l,\cdot)} \right\|^2_F
\]
\[
= \left\| R^{(l)} - d_{(:,l)} c_{(l,\cdot)} \right\|^2_F. \tag{7}
\]
The residual norm is minimized using the one rank approximation \(d_{(:,l)} c_{(l,\cdot)} \) of \(R^{(l)} \), containing the columns \(N = \{ n | c_{l,n} \neq 0, 1 \leq n \leq N \} \) of \(R^{(l)} \) where atom \(d_{(:,l)} \) was involved in the coding. The joint update of \(d_{(:,l)} \) and \(c_{(l,\cdot)} \) ensures that the coding coefficients are adapted w.r.t. to the new atom, where \(N \) preserves the location of the non-zero coefficients in the coding row \(c_{(l,\cdot)} \). The updated \(d_{(:,l)} \) and \(c_{(l,\cdot)} \) are immediately available in the computation of \(d_{(:,l+1)} \) and \(c_{(l+1,\cdot)} \).

To further reduce complexity, Rubinstein et al. [28] proposed a dictionary update step (algorithm 3) that approximates the SVD of \(R^{(l)} \) using power iterations. In our application, executing a single power iteration (lines 8 to 10) reduced the residual norm sufficiently.

Algorithm 3 Approximate K-SVD Dictionary Update
1: Input: \(X \in \mathbb{R}^{D \times N} \); \(D \in \mathbb{R}^{D \times L} \); \(C \in \mathbb{R}^{L \times N} \)
2: Output: Updated dictionary \(D \)
3: for \(l \leftarrow 1 \) to \(L \) do
4: \(d_{(:,l)} \leftarrow 0 \)
5: \(N \leftarrow \{ n | c_{l,n} \neq 0, 1 \leq n \leq N \} \)
6: \(R \leftarrow X_{(:,N)} - D C_{(:,N)} \)
7: \(g \leftarrow c_{(:,N)}^T R \)
8: \(h \leftarrow R g \)
9: \(h \leftarrow h / \| h \|_2 \)
10: \(g \leftarrow R^T h \)
11: \(d_{(:,l)} \leftarrow h \)
12: \(c_{(l,\cdot)} \leftarrow g^T \)
13: end for

The success of dictionary learning is measured by the ability of a trained dictionary to achieve a low approximation error when sparsely coding test data not seen during training. Coding a test observation with increasing cardinality \(K \), the use of a coherent dictionary results in a rapid decay of the approximation error, compared to the slow decay of using an incoherent dictionary that only yields a low approximation error when \(K \) approaches \(D \).
IV. SPEECH ENHANCEMENT

We model each observed frame \(x^{(n)} \in \mathbb{R}^D \) of degraded speech as a linear additive mixture

\[
x^{(n)} = s^{(n)} + i^{(n)}
\]

of target speech frame \(s^{(n)} \in \mathbb{R}^D \) and interferer frame \(i^{(n)} \in \mathbb{R}^D \). Given a single frame \(x \) (where the dependency on \(n \) is from now on omitted for notational clarity), speech enhancement pursues the goal to obtain an estimate \(\hat{s} \) of the underlying clean speech signal such that the residual norm \(\|\hat{s} - s\|_2 \) is significantly lower than \(\|x - s\|_2 \) (see Sec. VI-B for further discussion of measuring enhancement performance).

Speech enhancement is successful if the speech dictionary \(D^{(s)} \) is coherent to the speech signal and incoherent to the interferer signal. Classical coherent denoising considers the case where the interferer is pure noise (e.g. zero-mean Gaussian white noise) and does not contain any structure. Such an interferer is incoherent to any fixed dictionary [24], and in particular to the speech dictionary. This case is covered in Sec. IV-A.

Many relevant kinds of interferers contain structure. If the structured component of the interferer signal is also incoherent to the speech dictionary, the treatment is equivalent to the unstructured case. If the interferer is partially coherent to the speech dictionary, there is a risk that parts of the interferer signal will be confused as coming from the speech source. But for a structured interferer, training a coherent interferer dictionary \(D^{(i)} \) is possible. A sparse coding of the degraded speech observation in the composite dictionary \(D = [D^{(s)} D^{(i)}] \) significantly improves enhancement performance, if \(D^{(s)} \) is more coherent to \(s \) than \(D^{(i)} \), and \(D^{(i)} \) is more coherent to \(i \) than to \(D^{(s)} \). This more general case is covered in Sec. IV-B.

A. Incoherent Interferers

As mentioned, unstructured interferers cannot be sparsely represented in any fixed dictionary, in particular also not in a speech dictionary. As a prominent example for an incoherent interferer scenario, we consider the enhancement of speech degraded by zero-mean Gaussian white noise. In the enhancement step, the degraded speech mixture is sparsely coded in the speech dictionary using LARC with a suitably chosen residual coherence threshold \(\mu_{\text{enh}} \). LARC coding captures the structured speech signal components which have a coherence to the speech dictionary that is above the threshold, while discarding the interferer components, as they fall below the residual coherence threshold.

Formally, an observation \(x \) of degraded speech is sparsely coded in the speech dictionary \(D^{(s)} \) using LARC with a residual coherence threshold \(\mu_{\text{enh}} \), to obtain the vector of coding coefficients \(c^{(s)} \in \mathbb{R}^{L_s} \):

\[
c^{(s)} \leftarrow \text{LARC} \left(D^{(s)}, x, \mu_{\text{enh}} \right)
\]

Coding with a suitable \(\mu_{\text{enh}} \) leads to a coding vector \(c^{(s)} \) where large weights explain speech contributions in the mixture \(x \) using atoms from the speech dictionary \(D^{(s)} \). An estimate of the underlying clean speech is obtained as \(\hat{s} = D^{(s)} c^{(s)} \).

The above method provides excellent results as long as the considered interferer is sufficiently incoherent to the speech dictionary [20, ch. 12]. However, the more coherent an interferer becomes to the speech dictionary, the more likely it is that interferer components in the residual are explained by speech dictionary atoms, instead of being discarded by falling below \(\mu_{\text{enh}} \). For interferers which are partially coherent to the speech dictionary and also contain structure, a better approach is possible, based on sparse coding in the composite dictionary consisting of a speech and an interfering dictionary. This is discussed in the next section.

B. Partially Coherent Interferers

A structured interferer can be sparsely represented with low approximation error in a suitably trained dictionary. In order to enhance speech degraded by structured interferers which are partially coherent to the speech dictionary, the degraded speech mixture is sparsely coded in the composite dictionary consisting of the concatenation of the speech and the interferer dictionary.

Formally, an observation \(x \) of degraded speech is sparsely coded in the composite dictionary \(D = [D^{(s)} D^{(i)}] \) using LARC with a residual coherence threshold \(\mu_{\text{enh}} \), to obtain the coding vector \(c \):

\[
c \leftarrow \text{LARC} \left([D^{(s)} D^{(i)}], x, \mu_{\text{enh}} \right)
\]

The vector \(c = [c^{(s)}; c^{(i)}] \) (concatenation in column-direction) consists of weights \(c^{(s)} \) corresponding to the speech dictionary \(D^{(s)} \), as well as weights \(c^{(i)} \in \mathbb{R}^{L_i} \) corresponding to the interferer dictionary \(D^{(i)} \). An estimate of the underlying clean speech is again obtained as \(\hat{s} = D^{(s)} c^{(s)} \).

An exact recovery condition (ERC) [10] establishes the requirements on the signals and dictionaries, such that the speech contribution to the mixture is explained by weights in \(c^{(s)} \) only, and the structured interferer contribution is explained by weights in \(c^{(i)} \) only, i.e. no confusions occur between the sources. Assuming that both the speech and interferer signals have been generated by their respective dictionaries, i.e. \(s = D^{(s)} e^{(s)} \) and \(i = D^{(i)} e^{(i)} \), Donoho and Huo [10] show that recovery is exact if

\[
\|\hat{e}^{(s)}\|_0 + \|\hat{e}^{(i)}\|_0 < \frac{1}{2} \left(1 + \frac{1}{\mu(D^{(s)}, D^{(i)})} \right),
\]

where the mutual coherence between the speech and interferer dictionary is defined as

\[
\mu(D^{(s)}, D^{(i)}) = \max_{p,q} \left| d^{(s)}_{(p)} d^{(i)}_{(q)} \right|
\]

with \(p = 1, \ldots, L_s \) and \(q = 1, \ldots, L_i \) (also see [8] for the case of an additional unstructured component in the
mixture). Therefore, if the coding is sparse enough or the dictionaries are incoherent enough, no source confusion occurs.

For interferers like speech babble, the requirements of the ERC are often not satisfied in practice, but (9) still motivates how varying \(\|c\|_0 \) (by varying \(\mu_{\text{enh}} \)) controls the trade-off between source distortion and source confusion errors that both contribute to the estimation error \(\|s - \hat{s}\|_2 \) (see Fig. 2 for an illustration). For a very sparse \(c \), source confusions are unlikely according to (9) as long as \(\mu(\mathbf{D}^{(s)}, \mathbf{D}^{(i)}) \) is small enough, but \(\|x - Dc\|_2 \) is expected to be large because \(c \) lacks the necessary degrees of freedom in the approximation of \(x \). Consequently, the clean speech estimate will sound distorted, due to a too sparse coding of the speech source. On the other hand, \(\|x - Dc\|_2 \) can be made arbitrarily small by increasing \(\|c\|_0 \). However, (9) predicts that source confusions become more likely, which become apparent when separating \(Dc \) into \(\mathbf{D}^{(s)}c^{(s)} \) and \(\mathbf{D}^{(i)}c^{(i)} \). The resulting clean speech estimate will have insufficient interferer attenuation.

In our experiments, we have consistently observed that both source distortion and source confusion errors grow gradually with an increasing violation of the ERC, and that a trade-off is possible which leads to significantly better enhancement performance than an extremely sparse or dense coding. Furthermore, using LARC instead of OMP in the enhancement step improved the temporal smoothness of the enhanced speech, since the \(\ell_0 \) pseudo-norm (as used in OMP) does not penalize the magnitudes of the coding coefficients. If the optimal coding cardinality is not very sparse, the OMP algorithm can show numerical instability due to insufficient regularization. It then explains the residual using a combination of nearly co-linear atoms with coding coefficients that have large magnitudes and opposite signs. After separating the code \(c \) into the speech and interferer contributions \(c^{(s)} \) and \(c^{(i)} \), the large magnitude coding coefficients no longer cancel each other, if the corresponding atoms were chosen from both the speech and interferer dictionaries. This issue becomes audible in the separated signals as temporal fluctuations. The \(\ell_1 \) norm of LARC penalizes both the cardinality and the coefficient magnitude of \(c \), and therefore, the method achieves better stability due to a more effective regularization.

V. RELATED WORK

We evaluate the performance of our approach against two other model based enhancement approaches, that differ in model complexity and assumptions about the nature of the speech and interferer signals.

A. Geometric Spectral Subtraction

Geometric spectral subtraction (GA) was proposed in [17] to address the problem of residual musical noise encountered in standard spectral subtraction. As discussed in Sec. I-A, a spectral subtraction algorithm estimates the average interferer spectrum during speech inactivity, and subtracts it from the mixture spectrum during speech activity. A naive subtraction cannot perfectly recover the speech spectrum in non-stationary interferer scenarios however, as at times it subtracts too little or too much from the mixture spectrum, producing random isolated peaks of residual interferer energy.

This fact follows from transforming (1) into the power spectral domain,

\[
|X(\omega, n)|^2 = |S(\omega, n)|^2 + |I(\omega, n)|^2 + S(\omega, n)I^*(\omega, n) + S^*(\omega, n)I(\omega, n),
\]

where \(X(\omega, n), S(\omega, n) \) and \(I(\omega, n) \) denote the complex mixture, speech and interferer short-time Fourier spectra, respectively, and \(I^*(\omega, n) \) denotes the complex conjugate of \(I(\omega, n) \). Since the speech and the interferer are assumed to be statistically independent, the cross terms in (11) vanish in expectation. However, for short intervals they do not vanish, and omitting them introduces an approximation error. As shown in [17], this error is most severe if the SIR in a frequency bin is close to zero dB, which is often the case in speech enhancement applications.

Lu and Loizou therefore proposed short term estimators for both the speech and the interferer spectrum. Using geometric arguments, a suppression rule

\[
|\hat{S}(\omega, n)| = H_{\text{GA}}(\omega, n) |X(\omega, n)|
\]

for estimating the clean speech magnitude spectrum at frame \(n \) was derived, with

\[
H_{\text{GA}}(\omega, n) = \frac{|S(\omega, n)|}{|X(\omega, n)|} = \frac{1 - \frac{[\gamma(\omega, n)+1-\xi(\omega, n)]^2}{4\gamma(\omega, n)}}{1 - \frac{[\gamma(\omega, n)-1-\xi(\omega, n)]^2}{4\xi(\omega, n)}},
\]

where \(\xi(\omega, n) \) is the instantaneous a priori SNR and \(\gamma(\omega, n) \) is the instantaneous a posteriori SNR

\[
\xi(\omega, n) = \frac{|S(\omega, n)|^2}{|I(\omega, n)|^2}, \quad \gamma(\omega, n) = \frac{|X(\omega, n)|^2}{|I(\omega, n)|^2}.
\]

In contrast to naive spectral subtraction, the above rule (12) does not assume that the cross terms in (11) vanish. At each frame \(n \), \(\xi(\omega, n) \) and \(\gamma(\omega, n) \) are recursively computed from the clean speech spectrum estimate of past frames and the interferer spectrum estimate, which is initialized with the average interferer spectrum obtained from a speech pause, and continuously updated using minimum statistics [22]. The suppression weights \(H_{\text{GA}}(\omega, n) \) are limited to 1. Further details including smoothing and thresholding constants are given in [17].

Our approach is conceptually similar to geometric spectral subtraction in that both algorithms enhance the mixture based on instantaneous estimates of the speech and interferer spectra. However, GA does not incorporate an explicit speech model, and therefore its performance crucially depends on how well the interferer spectrum is tracked by the minimum statistics and recursive estimation approach.
B. Codebook-Based Spectral Filtering

Srinivasan et al. [32] trained speech and interferer codebooks by means of vector quantization in the LPC domain, using Itakura-Saito (IS) distortion as the distance measure. The long-term interferer spectrum (estimated by minimum statistics) was also included in the interferer codebook. In the enhancement step, the best matching pair of speech and interferer spectral shapes (with associated gains) was estimated from the mixture by minimizing the IS distortion between the mixture power spectrum and the linear combination of the speech and the interferer spectrum. Instead of a full optimization over all possible combinations of speech and interferer codebook elements, Srinivasan et al. proposed a greedy search. Finally, a Wiener filter was constructed from the spectral shapes and associated gains.

The interferer codebook size had to be chosen with care. A too generic interferer codebook turned out to be problematic, because the optimal pair of speech and interferer spectra became increasingly ambiguous. Therefore, the authors proposed to train several interferer specific codebooks, and to select the one appropriate for enhancement based on a classification of the long-term interferer spectrum. Furthermore, the LP order and the codebook size was optimized for each interferer type. While avoiding the complexity of using a VAD to obtain interferer training data, this approach presupposes that an appropriate interferer codebook is available for enhancement.

Srinivasan et al. proposed two different approaches to reduce the distortion resulting from the one-sparse coding of speech. An interpolation codebook was proposed in [32], and in [33] the mixture was explained by a Bayesian averaging over all pairs of speech and interferer codebook vectors. The full Bayesian treatment was simplified by assuming that the spectral shapes and gains are all independent, and that the likelihood is strongly peaked around the maximum-likelihood (ML) values for the speech and interferer gains. This assumption resulted in a weighted average over all pairs of vectors from the speech and interferer codebooks, where the weight of each pair is the product of the prior probabilities of the spectra.

Dictionary learning generalizes vector quantization [1], in that both speech and interferer are approximated by a sparse linear combination of multiple atoms, instead of a single codebook vector. This relaxation leads to a significant reduction of the source distortion error. Instead of also re-implementing the different feature space, the distance measure and the interpolation scheme of [32], our evaluation only focuses on the improvement gained by sparse coding with cardinality greater than one in both the dictionary learning and the enhancement steps. We therefore evaluate vector quantization and dictionary learning based enhancement in the same feature space, and compare our method to codebook-based spectral filtering where a mixture observation is explained using a weighted linear combination of one vector from the speech codebook and one vector from the interferer codebook.

VI. EVALUATION

We evaluate the performance of our method in comparison with established and powerful baselines, both in the speaker dependent and speaker independent case, with interferer signals obtained from a range of relevant environments. As the performance of speech enhancement strongly depends on the trade-off between source distortion and source confusion, we give insights on how to balance the two effects for optimal enhancement results. We also discuss design choices regarding feature extraction, dictionary learning, enhancement and resynthesis.

For the purpose of evaluating the performance of our enhancement approach, an environment specific interferer dictionary was trained for each interferer class. The ability of an interferer dictionary to generalize to signals from another interferer class is not evaluated, as environment specific interferer observations are assumed to be obtainable during speech pauses (as discussed in Sec. I).

A. Data

Speech data is obtained from the GRID2 audio-visual corpus, which provides a total of 34 speakers of both genders.

2http://www.dcs.shef.ac.uk/spandh/gridcorpus/
We have used the audio data of 15 male and 15 female speakers in our experiments. For each speaker, the corpus contains 1000 sentences of a simple grammatical structure without high-level linguistic cues, for instance “Place green at B 4 now” [5].

As non-stationary interferer data, we used location recordings made in the following environments: classical piano music replayed in a living room, street traffic noise and wind noise of an exposed microphone, all obtained from a proprietary corpus. Furthermore, obtained from the NOISEX-92 corpus [35]: speech babble noise, machine noise in a factory and engine and tire noise in a Volvo car. As a maximally unstructured and non-sparse interferer, synthetic zero-mean Gaussian white noise was used as well. Both the speech and the interferer data was sampled down to 16 kHz.

Dictionary learning as well as parameter optimization for dictionary learning and speech enhancement was performed on a training and a test data set. Final enhancement performance is reported on a separate validation set. In the speaker independent case, the speech dictionary was trained on six male and six female speakers of the training set, and the enhancement performance was averaged over the validation data of three male and three female speakers of the validation set. In the speaker dependent case, a dictionary was inferred on training data for each speaker of the validation set, and the enhancement performance was established on separate validation data of that speaker. The final results are reported as the average performance over all validation speakers. This procedure guarantees that the enhancement performance is established on the same validation data in the speaker dependent and independent case.

For the speech data, splitting was performed on a file-by-file basis. For the interferer data, the recordings were each split into three disjoint segments for training, test and validation, and an interferer specific dictionary was trained for each interferer class on the respective training data.

B. Performance Measures

Speech enhancement algorithms aim to improve both the speech quality and the speech intelligibility. A high-quality speech signal is perceived as being natural and pleasant to listen to, and free of distracting artifacts. However, measuring speech quality is challenging, as it is subjective. Speech intelligibility on the other hand is measured by word error rates in a speech recognition scenario. Good speech quality does not necessarily imply good speech intelligibility, and vice-versa. For instance, low quality synthesized speech can be highly intelligible.

We report results measured in the frequency-weighted segmental SNR (fwSegSNR) and in PESQ scores, which were shown to correlate well with both subjective speech quality and subjective speech intelligibility scores [18]. fwSegSNR is a conceptually simple objective measure, computed on individual signal frames, and the per-frame scores are averaged over time. We use the frequency-domain definition of the measure, incorporating a perceptually motivated frequency-band weighting as well as frequency-band spacing.

Given the true and estimated speech magnitude spectra, the frequency-weighted segmental SNR is defined as

\[
10 \log_{10} \frac{\sum_{n=1}^{N} \sum_{b=1}^{B} w_b \log_{10} \left(\frac{|S(b,n)|^2}{|S(b,n)| - |\hat{S}(b,n)|} \right)}{N \bar{w}}
\]

where \(S(b,n)\) is the frequency-domain representation of the clean speech signal, for frequency band \(b\) and time frame \(n\), \(\hat{S}(b,n)\) is the frequency-domain representation of the estimated speech signal, \(N\) is the total number of frames, \(B\) is the total number of frequency bands, \(w_b\) is the weight of frequency-band \(b\) and \(\bar{w} = \sum_{b=1}^{B} w_b\). The frequency-band weights \(w_b\) are based on the articulation index [16]. We use the Matlab implementation provided by [16].

The computation of PESQ scores is considerably more involved, the details are given in [25]. The performance results expressed in PESQ scores are available from the authors’ website. We again use the Matlab implementation provided by [16].

C. Feature Space

Speech enhancement was performed in the STFT magnitude domain and the MDCT domain. The MDCT is a real valued transform that includes phase information, for the STFT we only consider the magnitude and omit the phase, which implies that (2) holds only approximately in this case. Other representations could be chosen, as long as the feature extraction is (approximately) linear and the distance function is perceptually meaningful and mathematically tractable. We have found the \(\ell_2\) distance to correlate quite well with perceptually motivated measures for our choice of feature spaces.

The number of frequency bins per frame is determined by the length of the time-domain analysis window, where a
Hamming window was chosen for the STFT and a Kaiser-Bessel derived window was chosen for the MDCT. The temporal smoothness of frames is determined by the time-domain analysis window overlap, where a minimum amount of overlap is necessary to avoid aliasing. The transform domain was tiled in overlapping blocks (see Fig. 3), where the block height specifies the number of frequency bins, and the block width specifies the number of consecutive frames. A tall and narrow block (A in Fig. 3) captures more of the harmonic content, whereas a short and wide block (B in Fig. 3) captures more of the temporal dynamics. The final feature space for dictionary learning and enhancement is based on vectorized blocks.

As discussed in Sec. IV, estimating the clean speech from the mixture is possible if the speech dictionary is coherent to the target and incoherent to the interferer. Maximizing the coherence of the dictionary to its signal class is more easily achieved in a low dimensional feature space, i.e. a short analysis window or short block height and a single analysis frame per block. For structured signals, this results in low source distortion even for very sparse codings. Conversely, maximizing the incoherence of the dictionary to all other signal classes requires a high dimensional feature space. This minimizes source confusion and is achieved by increasing the block height, block width or both.

We have investigated analysis window lengths of up to 64 ms, and used a constant analysis window shift of 10 ms. The block height was varied from 8 frequency bins to full height, and the block width was varied from two to 64 frames. The resulting feature space dimensionality varied from 512 up to 2048 dimensions.

D. Dictionary Learning

An iterative dictionary learning algorithm is specified by the sparse coding algorithm, the dictionary update method and the choice of the initial dictionary. We used LARC (algorithm 2) as the sparse coding method, and the computationally efficient approximate SVD atom update step (algorithm 3) of [28]. Since the interferer properties are not known in advance, a dictionary learning algorithm where the sparsity parameter had to be tuned would be unsuitable. Specifying the desired coding sparsity using the residual coherence threshold μ_{dl} has the advantage over a fixed coding cardinality K that incoherent signal frames (such as background noise in the speech corpus) are rejected, and has the advantage over setting a residual noise variance σ that adaptation to the energy distribution of the signal is not necessary. We have investigated residual coherence thresholds from 0.2 to 0.6 for the sparse coding step.

We evaluated two initialization methods: the atoms of the initial dictionary were either sampled uniformly on the unit hypersphere, or obtained by re-sampling the training data. The first method generates an initial dictionary that is not adapted to the training data at all, whereas the second method results in atoms which are overly adapted to single observations. We have consistently observed that the latter sampling scheme leads to significantly faster convergence and better generalization performance than random initialization of the dictionary.

The algorithm approximately converged after twenty iterations of coding and dictionary updates.

1) Speech Dictionary: Both for the speaker dependent and independent case, the training utterances were randomly sub-sampled on a file and block level to obtain five minutes of clean speech. We have trained dictionaries containing up to 2000 atoms. Fig. 4 illustrates the generalization performance of the speech dictionary, measured by the residual norm versus coding cardinality curve, in both cases.

![Figure 4. Generalization performance of speaker independent (solid black) and dependent (dashed red) dictionaries on validation data ($D = 500$), for dictionary sizes of $L = 200$, 500 and 1000 atoms. Better performance can be achieved in the speaker dependent case, which is indicated by a faster decay of the median residual norm. Increasing the number of atoms improves coherence of the dictionary to its signal class in both cases.](image-url)

Increasing the dictionary size leads to lower residual norm for a given cardinality, with diminishing returns for larger dictionaries. Furthermore, better coherence of the dictionary to the signal class is achieved in the speaker dependent case, where the 200 atom dictionary outperforms the 1000 atom speaker independent dictionary. This is to be expected, given the greater spectral variation induced by the different genders in the speaker independent case.

2) Interferer Dictionary: We have trained dictionaries on a consecutive 30 second segment for each interferer. The algorithm parameters were identical for all interferers, and set to the same values as in speech dictionary learning. Plotting the generalization performance (see Fig. 5) reveals the amount of structure present in each interferer class. Compared to unstructured Gaussian white noise, a rapid decay of the median residual norm is achieved for car noise and piano music, indicating that there is prominent structure which is effectively modeled by a coherent trained dictionary. The generalization performance of the interferer dictionary is also predictive for the overall speech enhancement performance (see Sec. VI-E): a larger improvement...
is achieved both for highly structured and unstructured interferers, whereas a smaller improvement is achieved for the speech babble interferer, which contains an intermediate amount of structure that is partially coherent to the speech signal.

E. Speech Enhancement

The enhancement performance of all methods are evaluated using synthetic mixtures, which are generated by linear additive mixing of clean speech and interferer signals in the time-domain at various speech to interferer power ratios (SIRs). For the computation of the SIR, the signals were pre-processed with an A-weighted filter, in order to model the auditory sensitivity to different frequencies. An improvement is deemed significant if the median fwSegSNR value given the enhanced and the clean speech is above the 75th percentile of the fwSegSNR value given the degraded and the clean speech.

For the STFT domain, the speech magnitude estimate can be combined with the mixture phase, or the speech and interferer magnitudes provide estimates of the instantaneous a-priori and a-posteriori SNR, from which a suppression rule can be derived for filtering the mixture magnitude. We used the suppression rule of (12) in our experiments both for codebook-based filtering and our proposed algorithm, which enables a direct comparison with geometric spectral subtraction. Binary masking or Wiener filtering would be other options.

For all interferers and at all mixture SIRs that were tested, enhancement in the STFT magnitude domain significantly outperformed enhancement in the MDCT domain. Although (8) only holds in approximation for the STFT magnitude domain, and resynthesis of the time domain signal relies on the degraded mixture phase, the additional complexity of modeling phase information in the MDCT proved to have a greater negative impact on enhancement performance. We, therefore, only report detailed results for the STFT magnitude features.

In Fig. 6, X denotes the fwSegSNR value given the degraded speech and the clean speech, i.e. the objective measurement before any enhancement. Note that the fwSegSNR measure is sensitive to the spectral characteristics of each interferer class. This sensitivity explains the fact that for a fixed mixture SIR (e.g. 10 dB), the frequency-weighted segmental SNR shows different values for different interferers. Furthermore, GA denotes geometric spectral subtraction, VQ denotes codebook-based filtering using a linear combination...
of exactly one atom from the speech dictionary and one atom from the interferer dictionary (see Sec. V-B), and DL denotes our method.

The codebook size and the dictionary size were set to \(L = 1000 \) atoms each for the speech and the interferer dictionary. For dictionary learning, the residual coherence threshold \(\mu_{\text{all}} \) was set to 0.2 for all dictionaries. \(\mu_{\text{enh}} \) during enhancement was set to 0.15 and 0.1 in the speaker dependent and independent case, respectively. Both in the speaker dependent and speaker independent case, the maximum analysis window length (64 ms), full block height and maximum feature space dimensionality (2048) was optimal for VQ and DL. Given the range of block heights and widths that were tested, spectral information proved to be more important than temporal dynamics, i.e. tall and narrow blocks led to better results than short and wide blocks (for the same feature space dimensionality). Further analysis did show that although coherent dictionaries can also be trained for wide blocks, tall blocks result in smaller confusion error, which implies that all else being equal, the speech contribution to the mixture can be better distinguished from the interferer contribution based on spectral than based on temporal information.

We have also evaluated a variant of our method where only the speech dictionary (instead of the composite dictionary) was used in the enhancement step. As expected from the discussion in sections IV-A and IV-B, a significant improvement was only achieved for the white noise interferer, therefore we omit detailed results.

In the speaker independent case (Fig. 6), DL significantly outperforms the comparison methods in all interferer scenarios at 10 dB and 5 dB SIR, and in 5 out of 7 interferer scenarios at 0 dB SIR. Our method achieves a median fwSegSNR gain of 3.6 dB at 10 dB SIR, a median gain of 3.8 dB at 5 dB SIR, and a median gain of 3.2 dB at 0 dB SIR. In the case of lightly degraded speech (10 dB SIR), DL achieves a significant improvement for all interferer scenarios, whereas GA and VQ can introduce strong artifacts which further degrade the mixture signal. Note that our method shows the highest gain for the piano and the white noise interferer. This gain is explained by the fact that the piano interferer is very structured, which enables the learning of a good interferer model. On the other hand, the white noise interferer is unstructured and incoherent to speech, and is thus disregarded by LARC coding.

In the speaker dependent case (for detailed results, see the authors’ website), both DL and VQ achieve higher performance gains than in the speaker independent case. This is due to the fact that speaker dependency allows for a more coherent speech dictionary (cf. figure 4). At 10 dB SIR, DL achieves a median performance gain of 4.8 dB, where at 5 dB SIR a median gain of 5.2 dB and at 0 dB SIR a median gain of 4.6 dB is achieved. The performance increase from VQ to DL is smaller in the speaker dependent case, because less source distortion is introduced by the maximally sparse coding when the codebook is more coherent to the speech source. However, the increase from VQ to DL is still significant in all interferer scenarios at 10 dB and at 5 dB SIR, and in four out of seven scenarios at 0 dB SIR.

Spectrograms and example audio clips of clean speech, degraded speech, and enhanced speech are available from the authors’ website.

VII. Conclusions

We have presented an enhancement method for speech degraded by non-stationary real-world interferer signals. Our method is based on learning speech and interferer signal models, and achieves significant improvements over geometric spectral subtraction and codebook-based filtering, both for light and considerable degradation of the clean speech signal.

We model the speech signal class and the interferer signal classes using learned dictionaries. An observation of degraded speech is enhanced by coding it in a composite dictionary, followed by separating the contributions to the observed mixture into a speech and an interferer contribution, based on the sparse coding weights. For this purpose we introduced LARC, a coding algorithm based on Least Angle Regression, which employs a residual coherence threshold as the sparsity parameter. In contrast to specifying a coding cardinality or a residual norm value, it is not necessary to adapt the residual coherence threshold to the data on a frame by frame basis.

Controlling the coding sparsity enables a trade-off between source distortion and source confusion, i.e. controlling the amount of speech degradation versus interferer intrusion in the enhanced speech signal.

For high-dimensional feature spaces, the trained dictionary matrices contain millions of entries. The use of parametric functions for the dictionary atoms could reduce the size of the dictionary to a small number of parameters per atom [2]. This approach promises the possibility to handle larger dictionaries due to fewer model parameters, as well as enabling more efficient coherence computations if the parametric form has special structure, such as the Gabor atoms for which the coherence can be computed efficiently using the fast Fourier transform. Furthermore, the signal models could be extended to include a more descriptive prior probability distribution over the coding coefficients beyond independent sparsity priors, which would reduce the source confusion risk during enhancement.

Acknowledgments

The authors would like to thank P. Loizou for publishing the Matlab implementations of geometric spectral subtraction and the fwSegSNR and PESQ objective measures. Furthermore, the authors would like to thank the reviewers for their valuable comments and suggestions to improve this manuscript.

References

Christian D. Sigg (S’07–M’11) received the Dipl. Ing. degree in computer science and the Dr. sc. degree from ETH Zurich in 2004 and 2011, respectively.

From October 2005 to November 2011 he was with the Machine Learning Laboratory at ETH Zurich, first as a PhD student and then as a postdoctoral researcher. In December 2011 he joined the data management group at the Swiss Federal Office of Meteorology and Climatology (Meteoswiss), Zurich. His areas of interest include signal processing based on sparse coding principles and model inference for automated data quality control.

Tomás Dikk received his M.Sc. degree in computer science from ETH Zurich in 2008. Since March 2008, he is a research associate in the Machine Learning Laboratory at ETH Zurich. His research interests include speech enhancement based on sparse coding methods and audio-visual sensory fusion.
Joachim M. Buhmann is professor for Information Science and Engineering at the Computer Science Department of the Swiss Federal Institute of Technology Zurich (ETH). He received his Ph.D. degree in theoretical physics from the Technical University of Munich, Germany, in 1988.

He has held postdoctoral and research faculty positions at the University of Southern California, Los Angeles, and the Lawrence Livermore National Laboratory, Livermore, CA between 1988 and 1992. Until October 2003, he headed the Research Group on Pattern Recognition, Computer Vision and Bioinformatics in the Computer Science Department, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany. In October 2003 he joined ETH Zurich. His current research interests cover machine learning, statistical learning theory and its relations to information theory as well as applications of machine learning to challenging data analysis questions. The machine learning applications range from image understanding and medical image analysis, to signal processing, bioinformatics and computational biology. Special emphasis is devoted to model selection questions for the analysis of large scale heterogeneous data sets.

Dr. Buhmann has served as an associate editor for IEEE-TNN, IEEE-TIP and IEEE-TPAMI. He is currently the president of the German pattern recognition society DAGM.